【题目】三角形中,一个内角α是另一个内角β的两倍时,我们称此三角形是“特征三角形”,其中α为“特征角”.如果一个“特征三角形”的“特征角”为102°,那么这个“特征三角形”的最小内角为___________ .
参考答案:
【答案】27°
【解析】
根据已知一个内角α是另一个内角β的两倍得出β的度数,进而求出最小内角即可.
解:由题意得:α=2β,α=102°,则β=51°,
180°-102°-51°=27°,
故答案为:27°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在□ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,请判断线段BE、DF的关系,并证明你的结论

-
科目: 来源: 题型:
查看答案和解析>>【题目】若多项式x2﹣mx+1是一个完全平方式,则m=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N.

(1)观察图1,直接写出∠AEM与∠BNE的关系是;(不用证明)
(2)如图1,当M、N都分别在AB、BC上时,可探究出BN与AM的关系为:;(不用证明)
(3)如图2,当M、N都分别在AB、BC的延长线上时,(2)中BN与AM的关系式是否仍然成立?若成立,请说明理由:若不成立,写出你认为成立的结论,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+
x+c经过B、C两点,点E是直线BC上方抛物线上的一动点.
(1)求抛物线的解析式;
(2)过点E作y轴的平行线交直线BC于点M、交x轴于点F,当S△BEC=
时,请求出点E和点M的坐标;
(3)在(2)的条件下,当E点的横坐标为1时,在EM上是否存在点N,使得△CMN和△CBE相似?如果存在,请直接写出点N的坐标;如果不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:
年龄(单位:岁)
13
14
15
16
频数(单位:名)
5
15
x
10﹣x
对于不同的x,下列关于年龄的统计量不会发生改变的是( )
A.平均数、中位数
B.平均数、方差
C.众数、中位数
D.众数、方差 -
科目: 来源: 题型:
查看答案和解析>>【题目】( 本小题满分10分)如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:
⑴△AEH≌△CGF;
⑵四边形EFGH是菱形.

相关试题