【题目】已知:在四边形ABCD中,∠ABC=∠ADC=90,M、N分别是CD和BC上的点.
![]()
求作:点M、N,使△AMN的周长最小.
作法:如图,
![]()
(1)延长AD,在AD的延长线上截取DA=DA;
(2)延长AB,在AB的延长线上截取B A″=BA;
(3)连接A′A″,分别交CD、BC于点M、N.则点M、N即为所求作的点.
请回答:这种作法的依据是_____________.
参考答案:
【答案】①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)
②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);
③两点之间线段最短.
【解析】分析:分别作出点A关于CD,BC的对称点A′,A″,连接A′A″分别交CD、BC于点M、N此时△AMN周长最小.
详解:作图的依据是:①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)
②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);
③两点之间线段最短.
故答案为:①线段垂直平分线的定义(或线段垂直平分线的判定,或轴对称的性质即对称点的连线段被对称轴垂直平分)
②线段垂直平分线上的点到线段两个端点的距离相等(线段垂直平分线的性质);
③两点之间线段最短.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于
MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若AC=9,AB=15,且S△ABC=54,则△ABD的面积是( )
A.
B.
C. 45D. 35 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点A(﹣4,4),一个以A为顶点的45°角绕点A旋转,角的两边分别交x轴正半轴,y轴负半轴于E、F,连接EF.当△AEF是直角三角形时,点E的坐标是_____

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两位同学进行长跑训练,甲和乙所跑的路程S(单位:米)与所用时间t(单位:秒)之间的函数图象分别为线段OA和折线OBCD.则下列说法正确的是( )

A. 两人从起跑线同时出发,同时到达终点
B. 跑步过程中,两人相遇一次
C. 起跑后160秒时,甲、乙两人相距最远
D. 乙在跑前300米时,速度最慢
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形
中,
,
,
是
边的垂直平分线,连接
.(1)求证:
;(2)若
,
,求
的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;
求证:(1)CF=EB.
(2)AB=AF+2EB.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.

求证:(1)EC=BF;
(2)EC⊥BF;
(3)连接AM,求证:AM平分∠EMF.
相关试题