【题目】甲、乙两人同时从A地前往相距5千米的B地.甲骑自行车,途中修车耽误了20分钟,甲行驶的路程
(千米)关于时间
(分钟)的函数图像如图所示;乙慢跑所行的路程
(千米)关于时间
(分钟)的函数解析式为
.
(1)在图中画出乙慢跑所行的路程关于时间的函数图像;
(2)乙慢跑的速度是每分钟________千米;
(3)甲修车后行驶的速度是每分钟________千米;
(4)甲、乙两人在出发后,中途________分钟时相遇.
![]()
参考答案:
【答案】(1)图像见解析;(2)
;(3)
;(4)24.
【解析】
(1)根据所给解析式可知函数过原点,并过点(60,5),由这两点即可得出答案.
(2)乙慢跑的速度即是乙慢跑所行的路程s(千米)关于时间t(分钟)的函数解析式的斜率;
(3)甲修车后行驶路程是3km,所用时间是20min,即可求出速度;
(4)甲乙相遇,体现在(1)中的图形即是它们的交点,即求出交点得出答案.
(1)所画图形如下所示:
![]()
(2)乙慢跑的速度为:
千米/分钟;
(3)甲修车后行驶20min,所形路程为3km,
故甲修车后行驶的速度为:3÷20=
km/min;
(4)由甲行驶的路程s(千米)关于时间t(分钟)的函数图象与乙慢跑所行的路程s(千米)关于时间t(分钟)的函数图象可知:
在距离A地2km处甲乙相遇,此时乙行驶了2×12=24分钟,
即甲、乙两人在出发后,中途24分钟时相遇.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,将
绕点A顺时针旋转到
的位置,点B、O分别落在点
、
处,点
在x轴上,再将
绕点
顺时针旋转到
的位置,点
在x轴上,将
绕点
顺时针旋转到
的位置,点
在x轴上,依次进行下去
若点
,
,则点
的坐标为______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】方程①
,②
,③
,④
(
为实数),⑤
,⑥
其中一定是一元二次方程的个数为( )A.1B.2C.3D.4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC三个顶点坐标分别为A(﹣3,﹣1),B(﹣4,﹣4),C(﹣1,﹣2),结合所给平面直角坐标系解答下列问题:
(1)将△ABC向右平移5个单位长度,再向上平移6个单位,画出平移后的△A1B1C1.
(2)将△ABC绕原点O顺时针旋转90°,画出旋转后的△A2B2C2,此时点A2的坐标为_____.
(3)若以A、B、C、D为顶点的四边形是平行四边形,请直接满足条件的点D的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店将进货价每个10元的商品按售价18元售出时,每天可卖出60个.商店经理到市场上做了一番调查后发现,若将这种商品的售价每提高1元,则日销售量就减少5个;若将这种商品的售价每降低1元,则日销售量就增加10个。为获得每日最大利润,此商品售价应定为每个多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线
与双曲线
交于
、
两点,且点
的横坐标为4.
(1)若双曲线
上一点
的纵坐标为8,求
的面积;(2)过原点
的另一条直线
交双曲线
于
,
两点(点
在第一象限),若由点
,
,
,
为顶点组成的四边形面积为24,求点
的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC内接于⊙O,过点A作直线EF.
(1)如图①,AB是直径,要使EF是⊙O的切线,还须添加一个条件是(只需写出三种情况).
(ī) (īī) (īīī)
(2)如图(2),若AB为非直径的弦,∠CAE=∠B,则EF是⊙O的切线吗?为什么?

相关试题