【题目】已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】C
【解析】如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.
![]()
由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,
即72﹣x2=82﹣(5﹣x)2,解得x=1,
∴AD=4
,
∵
BCAD=
(AB+BC+AC)r,
×5×4
=
×20×r,
∴r=
,
故答案为:C
面积法求内切圆半径:先利用勾股定理列出方程求BC边上的高,进而求出三角形面积,三角形的面积还可以等于三个以O为顶点,各边为边的小三角形的面积和,从而建立以r 为未知数的简单的方程,求出r.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E是AC的中点,OE交CD于点F.

(1)若∠BCD=36°,BC=10,求BD的长;
(2)判断直线DE与⊙O的位置关系,并说明理由;
(3)求证:2CE2=ABEF. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.

(1)求抛物线的解析式和对称轴;
(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;
(3)设四边形DECO的面积为s,求s关于t的函数表达式. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.

(1)求证:CE=BD;
(2)若AB=4,求AF的长度;
(3)求sin∠EFC的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠ABC=63°,∠ECB=117°.
(1) AB与ED平行吗?为什么?
(2)若∠P=∠Q,则∠1与∠2是否相等?说说你的理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.甲、乙两种商品原来的单价各是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC=2
,∠BAC=120°,点D,E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为 . 
相关试题