【题目】已知关于x的一元二次方程x2﹣6x+k=0.
(1)当它有两个实数根时,求k的范围;
(2)当k=﹣11时,假设方程两根是x1,x2,求x12+x22+8的值.
参考答案:
【答案】(1)k的取值范围是k≤9;(2)66.
【解析】
试题分析:(1)根据关于x的一元二次方程x2﹣6x+k=0有两个实数根,可得△≥0,从而可以得到k的范围;
(2)根据k=﹣11,方程两根是x1,x2,可以得到两根之和与两根之积,从而可以得到x12+x22+8的值.
解:(1)∵关于x的一元二次方程x2﹣6x+k=0,
∴当它有两个实数根时,△=(﹣6)2﹣4×1×k≥0,
解得,k≤9,
即k的取值范围是k≤9;
(2)∵k=﹣11,
∴x2﹣6x﹣11=0,
∴
,
∴x12+x22+8=
=62﹣2×(﹣11)+8=66,
即x12+x22+8的值是66.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某经销商用8000元购进了一种衬衫,他以每件58元的价格出售,很快售完,又用17600元购进同种衬衫,数量是第一次的2倍,但每件进价比第一次多4元,服装店仍按每件58元出售,全部售完.
(1)设他第一次购进这种衬衫的价格为x元/件,则他第一次购进这种衬衫 件,他第二次购进这种衬衫 件;
(2)问他在这次服装生意中共盈利多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC的三个顶点的坐标为:A(2,4),B(4,3),C(1,1),直线l过点(﹣1,0)且平行于y轴.

(1)在图中作出△ABC关于x轴对称的△A′B′C′;
(2)作出△ABC关于直线l对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在四边形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=3
.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.
(1)求点B的坐标;
(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;
(3)点M在(2)中直线DE上,四边形ODMN是菱形,求N的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】化简,求值
(1)5x2y+{xy﹣[5x2y﹣(7xy2+
xy)]﹣(4x2y+xy)}﹣7xy2,其中x=﹣
,y=﹣16.(2)A=4x2﹣2xy+4y2,B=3x2﹣6xy+3y2,且|x|=3,y2=16,|x+y|=1,求4A+[(2A﹣B)﹣3(A+B)]的值.
(3)如果m﹣3n+4=0,求:(m﹣3n)2+7m3﹣3(2m3n﹣m2n﹣1)+3(m3+2m3n﹣m2n+n)﹣m﹣10m3的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为( )

A.
B.
C.1 D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(4,0),点B的坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC⊥x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.

(1)当b=3时,
①求直线AB的解析式;
②若QO=QA,求P点的坐标.
(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.
相关试题