【题目】如图,直线l:y=kx+b(k<0)与函数y=
(x>0)的图象相交于A、C两点,与x轴相交于T点,过A、C两点作x轴的垂线,垂足分别为B、D,过A、C两点作y轴的垂线,垂足分别为E、F;直线AE与CD相交于点P,连接DE,设A、C两点的坐标分别为(a,
)、(c,
),其中a>c>0.
(1)如图①,求证:∠EDP=∠ACP;![]()
(2)如图②,若A、D、E、C四点在同一圆上,求k的值;![]()
(3)如图③,已知c=1,且点P在直线BF上,试问:在线段AT上是否存在点M,使得OM⊥AM?请求出点M的坐标;若不存在,请说明理由.![]()
参考答案:
【答案】
(1)
证明:由题意可知P(c,
),E(0,
),D(c,0),
∴PA=a﹣c,EP=c,PC=
﹣
=
,DP=
,
∴
=
=
,且∠EPD=∠APC,
∴△EPD∽△CPA,
∴∠EDP=∠ACP
(2)
如图1,连接AD、EC,
![]()
由(1)可知DE//AC,
∴∠DEC+∠ECA=180°,
∵A、D、E、C四点在同圆周上,
∴∠DEC+∠DAC=180°,
∴∠ECA=∠DAC,
在△AEC和△CDA中
![]()
∴△AEC≌△CDA(AAS),
∴CD=AE,即a=
,可得ac=4,
∵A、C在直线l上,
∴
,解得k=
=﹣
=﹣1
(3)
假设在线段AT上存在点M,使OM⊥AM,连接OM、OA,作MN⊥x轴于点N,如图2,
![]()
∵c=1,
∴C(1,4),F(0,4),P(1,
),B(a,0),
设直线BF的解析式为y=k′x+4,由题意可得
,解得a=2,
∴A(2,2),
∴AP为△DCT的中位线,
∴T(3,0),
∴AT=
= ![]()
∵S△OAT=
OTAB=
ATOM,
∴OM=
=
=
,
在Rt△OMT中,MT=
=
=
,
同理可求得MN=
=
,
在Rt△OMN中,ON=
=
=
,
∵2<
<3,
∴点M在线段AT上,
即在线段AT上存在点M,使得OM⊥AM,M点的坐标为(
,
)
【解析】(1)由P、E、D的坐标可表示出PA、EP、PC和DP的长,可证明△EPD∽△CPA,利用相似三角形的性质可证得结论;(2)连接AD、EC,可证明△AEC≌△CDA,可得CD=AE,把A、C坐标代入直线l解析式,可求得k的值;(3)假设在线段AT上存在点M,使得OM⊥AM,连接OM、OA,可表示出C、F、P、B的坐标,利用直线BF的解析式可求得a的值,可求得A点坐标,可求得T点坐标,在△OAT中,利用等积法可求得OM的长,在RtOMT中可求得MT的长,作MN⊥x轴,同理可求得MN的长,则可求得ON的长,可判断N在线段BT上,满足条件,从而可知存在满足条件的M点.
【考点精析】解答此题的关键在于理解一次函数的性质的相关知识,掌握一般地,一次函数y=kx+b有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为
:1,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”ABCD中,P为DC边上一定点,且CP=BC,如图所示.
(1)如图①,求证:BA=BP;
(2)如图②,点Q在DC上,且DQ=CP,若G为BC边上一动点,当△AGQ的周长最小时,求
的值;
(3)如图③,已知AD=1,在(2)的条件下,连接AG并延长交DC的延长线于点F,连接BF,T为BF的中点,M、N分别为线段PF与AB上的动点,且始终保持PM=BN,请证明:△MNT的面积S为定值,并求出这个定值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两校派相同人数的优秀学生,参加县教育局举办的中小学生美文诵读决赛。比赛结束后,发现学生成绩分别是7分、8分、9分或10分(满分10分),核分员依据统计数据绘制了如下尚不完整的统计图表。根据这些材料,请你回答下列问题:
甲校成绩统计表
成绩
7分
8分
9分
10分
人数
11
0
8
(1)在图①中,“7分”所在扇形的圆心角等于_______
(2)求图②中,“8分”的人数,并请你将该统计图补充完整。

(3)经计算,乙校学生成绩的平均数是8.3分,中位数是8分。请你计算甲校学生成绩的平均数、中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?
(4)如果教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列变形中:
①由方程
=2去分母,得x﹣12=10;②由方程
x=
两边同除以
,得x=1;③由方程6x﹣4=x+4移项,得7x=0;
④由方程2﹣
两边同乘以6,得12﹣x﹣5=3(x+3).错误变形的个数是( )个.
A. 4 B. 3 C. 2 D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】A,B两地相距2400米,甲、乙两人分别从A,B两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A地15分钟后甲到达B地.
(1)求甲每分钟走多少米?
(2)两人出发多少分钟后恰好相距480米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】将连续的奇数1、3、5、7、9,……排成如下的数表:

(1)十字框中的5个数的和与中间的数23有什么关系?若将十字框上下左右平移,可框住另外5个数,这5个数还有这种规律吗?
(2)设十字框中中间的数为a,用含a的式子表示十字框中的其他四个数;
(3)十字框中的5个数的和能等于2018吗?若能,请写出这5个数;若不能,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点A(0,8)、B(8,0)、E(-2,0),动点 C从原点O出发沿OA方向以每秒1个单位长度向点A运动,动点D从点B出发沿BO方向以每秒2个单位长度向点O运动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动,设运动时间为t 秒。
(1)填空:直线AB的解析式是_____________________;
(2)求t的值,使得直线CD∥AB;
(3)是否存在时刻t,使得△ECD是等腰三角形?若存在,请求出一个这样的t值;若不存在,请说明理由。

相关试题