【题目】如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=2
,若∠EOF=45°,则F点的纵坐标是( )
![]()
A.
B. 1 C.
D.
-1
参考答案:
【答案】A
【解析】分析:如图连接EF,延长BA使得AM=CE,则△OCE≌△OAM.再证明△OFE≌△FOM,根据全等三角形的性质和图形即可得EF=FM=AF+AM=AF+CE,根据勾股定理求得OE的长,设AF=x,则EF=2+x,EB=2,FB=4-x,在Rt△BEF中,根据勾股定理可得方程(2+x)2=22+(4-x)2,解方程求得x值,即可得点F的纵坐标.
详解:如图连接EF,延长BA使得AM=CE,则△OCE≌△OAM.
![]()
∴OE=OM,∠COE=∠MOA,
∵∠EOF=45°,
∴∠COE+∠AOF=45°,
∴∠MOA+∠AOF=45°,
∴∠EOF=∠MOF,
在△OFE和△OFM中,
,
∴△OFE≌△FOM,
∴EF=FM=AF+AM=AF+CE,设AF=x,
∵CE=
,
∴EF=2+x,EB=2,FB=4-x,
∴(2+x)2=22+(4-x)2,
∴x=
,
∴点F的纵坐标为
,
故选A.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第(100)个图案有___________________个三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.

(1)AM= ,AP= .(用含t的代数式表示)
(2)当四边形ANCP为平行四边形时,求t的值
(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,
①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由
②使四边形AQMK为正方形,则AC= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=ax2+bx﹣4与x轴交于A,B两点,(点B在点A的右侧)且A,B两点的坐标分别为(﹣2,0)、(8,0),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交BD于点M.

(1)求抛物线的解析式;
(2)当点P在线段OB上运动时,试探究m为何值时,四边形CQMD是平行四边形?
(3)在(2)的结论下,试问抛物线上是否存在点N(不同于点Q),使三角形BCN的面积等于三角形BCQ的面积?若存在,请求出点N的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=2,AC=
,∠BAC=105°,△ABD,△ACE,△BCF都是等边三角形,则四边形AEFD的面积为__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A在数轴上对应的有理数为a,将点A向左移动6个单位长度,再向右移动2个单位长度与点B重合,点B对应的有理数为﹣24.
(1)求a;
(2)如果数轴上的点C在数轴上移动3个单位长度后,距B点8个单位长度,那么移动前的点C距离原点有几个单位长度?
相关试题