【题目】如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2017次相遇地点的坐标是_____.
![]()
参考答案:
【答案】(﹣1,1)
【解析】
利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.
矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:
①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×
=4,物体乙行的路程为12×
=8,在BC边相遇;
②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×
=8,物体乙行的路程为12×2×
=16,在DE边相遇;
③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×
=12,物体乙行的路程为12×3×
=24,在A点相遇;
…
此时甲乙回到原出发点,则每相遇三次,两点回到出发点,
∵2017÷3=672…1,
故两个物体运动后的第2016次相遇地点的是点A,
即物体甲行的路程为12×1×
=4,物体乙行的路程为12×1×
=8时,达到第2017次相遇,
此时相遇点的坐标为:(﹣1,1),
故答案为:(﹣1,1).
-
科目: 来源: 题型:
查看答案和解析>>【题目】看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求证:AD平分∠BAC.
证明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°(___________)
∴∠ADC=∠EGC(等量代换)
∴AD∥EG(_____________)
∴∠1=∠2(___________)
∠E=∠3(___________)
又∵∠E=∠1( 已知)
∴∠2=∠3(___________)
∴AD平分∠BAC(___________).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC中,BC=6,AB、AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解题:
(1)原理:对于任意两个实数a、b,
若ab>0,则a和b同号,即:
或
;若ab<0,则a和b异号,即:
或
;(2)对不等式(x+1)(x﹣2)>0来说,把(x+1)和(x﹣2)看成两个数a和b,所以按照上述原理可知:(Ⅰ)
或(Ⅱ)
,所以不等式(x+1)(x﹣2)>0的求解就转化求解不等式组(I)和(Ⅱ).(3)应用:解不等式x2﹣x﹣12>0
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当3CQ=CE时,EP+BP= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】解不等式组:
,并把解集在如图数轴上表示出来.
相关试题