【题目】看图填空:已知如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求证:AD平分∠BAC.
证明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°(___________)
∴∠ADC=∠EGC(等量代换)
∴AD∥EG(_____________)
∴∠1=∠2(___________)
∠E=∠3(___________)
又∵∠E=∠1( 已知)
∴∠2=∠3(___________)
∴AD平分∠BAC(___________).
![]()
参考答案:
【答案】 垂直的定义; 同位角相等,两直线平行; 两直线平行,内错角相等; 两直线平行,同位角相等; 等量代换; 角平分线的定义
【解析】试题分析:由垂直可证明AD∥EG,由平行线的性质可得到∠1=∠2=∠3=∠E,可证得结论,据此填空即可.
证明:
∵AD⊥BC于D,EG⊥BC于G(已知),
∴∠ADC=90°,∠EGC=90°(垂直的定义),
∴∠ADC=∠EGC(等量代换),
∴AD∥EG(同位角相等,两直线平行),
∴∠1=∠2(两直线平行,内错角相等),
∠E=∠3(两直线平行,同位角相等),
又∵∠E=∠1(已知),
∴∠2=∠3(等量代换),
∴AD平分∠BAC(角平分线的定义).
故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同位角相等;等量代换;角平分线的定义.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D.
(1)求证:AC∥DE;
(2)若BF=13,EC=5,求BC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】运用乘法公式计算:
(1)98×102
(2)(2x﹣3y)2+(x﹣2y)(x+2y)
-
科目: 来源: 题型:
查看答案和解析>>【题目】在□ABCD中,E、F分别是AB、CD的中点,AF与DE相交于点G,CE与BF相交于点H.
(1)求证:四边形EHFG是平行四边形;
(2)若四边形EHFG是矩形,则□ABCD应满足的条件是 (不需要证明)

-
科目: 来源: 题型:
查看答案和解析>>【题目】能判定四边形ABCD是平行四边形的条件是:∠A:∠B:∠C:∠D的值为( )
A. 1:2:3:4 B. 1:4:2:3 C. 1:2:2:1 D. 1:2:1:2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上, 顶点C、D在圆内,将正方形ABCD沿圆的内壁作无滑动的滚动.当滚动一周回到原位置时,点C运动的路径长为__ _.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A(2,1),过点A作x轴的垂线,垂足为C,则点C的坐标为( ).
A.(1, 2)B.(1,0)C.(0,1)D.(2,0)
相关试题