【题目】如图,已知∠1+∠2=180°,∠3=B,
(1)证明:EF∥AB.
(2)试判断∠AED与∠C的大小关系,并说明你的理由.
![]()
参考答案:
【答案】(1)证明见解析;(2)∠AED与∠C相等,理由见解析.
【解析】
(1)根据∠1+∠2=180°,∠1+∠DFE=180°,可得∠2=∠DFE,由内错角相等,两直线平行证明EF∥AB;
(2)根据∠3=∠ADE,∠3=∠B,由同位角相等,两直线平行证明DE∥BC,故可根据两直线平行,同位角相等,可得∠AED与∠C的大小关系.
![]()
解:(1)∵∠1+∠DFE=180°(平角定义),∠1+∠2=180°(已知),
∴∠2=∠DFE,
∴EF∥AB(内错角相等,两直线平行);
(2)∠AED与∠C相等.
∵EF∥AB,
∴∠3=∠ADE(两直线平行,内错角相等),
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代换),
∴DE∥BC(同位角相等,两直线平行),
∴∠AED=∠C(两直线平行,同位角相等).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正确的是( )

A. ①②③④ B. ①② C. ①③④ D. ①②④
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,EF∥AD,∠1 =∠2,∠BAC = 75°将求∠AGD的过程填写完整
解:∵EF∥AD

∴ ∠2 = ( )
又∵ ∠1 = ∠2
∴ ∠1 = ∠3。( )
∴AB∥ 。( )
∴∠BAC + = 180°。( )
∵∠BAC=75°∴∠AGD = 。
-
科目: 来源: 题型:
查看答案和解析>>【题目】解不等式组:
,并求出它的所有整数解的和. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD所在的网格图中,每个小正方形的边长均为1个单位长度.

(1)请画出将四边形ABCD向上平移5个单位长度,再向左平移2个单位长度后所得的四边形A′B′C′D′.
(2)求线段AB扫过的面积。
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面的文字,解答问题:大家知道
是无理数,而无理数是无限不循环小数,因此
的小数部分我们不可能全部地写出来,于是小明用
﹣1来表示
的小数部分,因为
的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为
<
<
,即2<
<3,所以
的整数部分为2,小数部分为(
﹣2)请解答:
(1)
的整数部分是 ,小数部分是 ;(2)如果
的小数部分为a,
的整数部分为b,求a+b﹣
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=
(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).
(1)求反比例函数和一次函数的表达式;
(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.
相关试题