【题目】如图,一次函数
的图像经过点A(-1,0),并与反比例函数
(
)的图像交于B(m,4)
![]()
(1)求
的值;
(2)以AB为一边,在AB的左侧作正方形
,求C点坐标;
(3)将正方形
沿着
轴的正方向,向右平移n个单位长度,得到正方形
,线段
的中点为点
,若点
和点
同时落在反比例函数
的图像上,求n的值.
参考答案:
【答案】(1)k1=4;(2)C点坐标为(-3,6);(3)n=
.
【解析】
(1)把A点坐标代入y=2x+b,可求出b值,把B(m,4)代入可求出m值,代入
即可求出k1的值;(2)过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,利用AAS可证明△CBG≌△BAF,可得AF=BG,CG=BF,根据A、B两点坐标即可得C点坐标;(3)由A、B、C三点坐标可得向右平移n个单位后A1、B1、C1的坐标,即可得E点坐标,根据k2=xy列方程即可求出n值.
(1)∵一次函数
的图像经过点A(-1,0),
∴-2+b=0,
解得:b=2,
∵点B(m,4)在一次函数y=2x+2上,
∴4=2m+2,
解得:m=1,
∵B(1,4)在反比例函数
图象上,
∴k1=4.
(2)如图,过B作BF⊥x轴于F,过C作CG⊥FB,交FB的延长线于G,
∵A(-1,0),B(1,4),
∴AF=2,BF=4,
∴∠GCB+∠CBG=90°,
∵四边形ABCD是正方形,
∴∠ABC=90°,
∴∠ABF+∠CBG=90°,
∴∠GCB=∠ABF,
又∵BC=AB,∠AFB=∠CGB=90°,
∴△CBG≌△BAF,
∴BG=AF=2,CG=BF=4,
∴GF=6,
∵在AB的左侧作正方形ABCD,
∴C点坐标为(-3,6).
![]()
(3)∵正方形ABCD沿x轴的正方向,向右平移n个单位长度,
∴A1(-1+n,0),B1(1+n,4),C1(-3+n,6),
∵线段A1B1的中点为点E,
∴E(n,2),
∵点
和点E同时落在反比例函数
的图像上,
∴k2=2n=6(-3+n)
解得:n=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=﹣
x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+
x+c经过B、C两点.(1)求抛物线的解析式;
(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;
(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】对于反比例函数
,下列说法中不正确的是( )A. 图像经过点(1.-2)
B. 图像分布在第二第四象限
C. x>0时,y随x增大而增大
D. 若点A(
)B(
)在图像上,若
,则
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图两张长相等,宽分别是1和3的矩形纸片上叠合在一起,重叠部分为四边形ABCD,且AB+BC=6,则四面行ABCD的面积为( )

A. 3B.
C. 9D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,D为AB中点,AE∥CD,CE∥AB.
(1)试判断四边形ADCE的形状,并证明你的结论.
(2)连接BE,若∠BAC=30°,CE=1,求BE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】据新浪网调查,在第十二届全国人大二中全会后,全国网民对政府工作报告关注度非常高,大家关注的热点话题分别有:消费、教育、环保、反腐及其它共五类,且关注五类热点问题的网民的人数所占百分比如图l所示,关注该五类热点问题网民的人数的不完整条形统计如图2,请根据图中信息解答下列问题.

(1)求出图l中关注“反腐”类问题的网民所占百分比x的值,并将图2中的不完整的条形统计图补充完整;
(2)为了深度了解成都网民对政府工作报告的想法,新浪网邀请成都市5名网民代表甲、乙、丙、丁、戊做客新浪访谈,且一次访谈只选2名代表.请你用列表法或画树状图的方法,求出一次所选代表恰好是丙和丁的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设0!表示自然数由1到n的连乘积,并规定0!=1,Anm=
,nm=
(n≥0,n≥m)例如1!=1,2!=1×2=2,3!=1×2×3=6,A53=
=60,C64=
=15,请回答以下问题:(1)求C32,A32;
(2)试根据C32,A32,2!的值写出C32,A32,2!满足的等量关系;试根据C43,A43,3!的值写出C43,A43,3!满足的等量关系;试根据C54,A54,4!的值写出C54,A54,4!满足的等量关系;
(3)探究Amn,Cmn与n!之间满足的等量关系(不需要证明).
相关试题