【题目】等腰直角△ABC中,AB=AC,∠BAC=90°,过点B,点C分别作经过点A的直线l的垂线,垂足分别为M、N.
(1)请找到一对全等三角形,并说明理由;
(2)BM,CN,MN之间有何数量关系?并说明理由;
(3)若BM=3,CN=5,求四边形MNCB的面积.
![]()
参考答案:
【答案】(1)△ABM≌△CAN,证明见解析;(2)BM+CN=MN,理由见解析;(3)32.
【解析】
(1)根据∠BAC=90°BM⊥MN,得出BM⊥MN,即可证明全等
(2)根据题(1)△ABM≌△CAN,可知CN=AM,BM=AN,即可解答
(3)根据题(2)MN=BM+CN=8,即可解答
(1)△ABM≌△CAN,
理由如下:∵∠BAC=90°,
∴∠MAB+∠NAC=90°,
∵BM⊥MN,
∴∠MAB+∠MBA=90°,
∴∠MBA=∠NAC,
在△ABM和△CAN中,
,
∴△ABM≌△CAN;
(2)BM+CN=MN,
理由如下:∵△ABM≌△CAN,
∴CN=AM,BM=AN,
∴MN=AM+AN=BM+CN;
(3)∵BM=3,CN=5,
∴MN=BM+CN=8,
∴四边形MNCB的面积=
×(BM+CN)×MN=
×(3+5)×8=32.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将平行四边形纸片
沿对角线
翻折,使点
落在平行四边形
所在平面内,
和
相交于点
,连接
判断
和
的位置关系,并证明.
在图1中,若
,是否存在
恰好为直角三角形的情形?若存在,求出
的长度:若不存在,请说明理由.
若将图中平行四边形纸片
换成矩形纸片
,沿对角线折叠发现所得图形是轴对称图形;将所得图形沿其对称轴再次折叠后,得到的仍是轴对称图形.则矩形纸片
的长宽之比是多少?请直接写出结果.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD内接于⊙O,∠BAD=90°,
=
,过点C作CE⊥AD,垂足为E,若AE=3,DE=
,求∠ABC的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于F.
(1)如图1,若∠E=80°,求∠BFD的度数.
(2)如图2:若∠ABM=
∠ABF,∠CDM=
∠CDF,写出∠M和∠E之间的数量关系并证明你的结论.(3)若∠ABM=
∠ABF, ∠CDM=
∠CDF, 设∠E=m°,直接用含有n、m°的代数式写出∠M= (不写过程)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A,B为定点,直线l∥AB,P是直线l上一动点.对于下列各值:①线段AB的长②△PAB的周长③△PAB的面积④∠APB的度数其中不会随点P的移动而变化的是( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学在今年4月23日的“世界读书日”开展“人人喜爱阅读,争当阅读能手”活动,同学们积极响应,涌现出大批的阅读能手.为了激励同学们的阅读热情,养成每天阅读的好习惯,学校对阅读能手进行了奖励表彰,计划用2700元来购买甲、乙、丙三种书籍共100本作为奖品,已知甲、乙、丙三种书的价格比为2:2:3,甲种书每本20元.
(1)求出乙、丙两种书的每本各多少元?
(2)若学校购买甲种书的数量是乙种书的1.5倍,恰好用完计划资金,求甲、乙、丙三种书各买了多少本?
(3)在活动中,同学们表现优秀,学校决定提升奖励档次,增加了245元的购书款,在购买书籍总数不变的情况下,求丙种书最多可以买多少本?
(4)七(1)班阅读氛围浓厚,同伴之间交换书籍共享阅读,已知甲种书籍共270页,小明同学阅读甲种书籍每天21页,阅读5天后,发现同伴比他看得快,为了和同伴及时交换书籍,接下来小明每天多读了a页(20<a<40),结果再用了b天读完,求小明读完整本书共用了多少天?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
上有三个正方形
,若正方形
,
的面积分别为8和15,则正方形
的面积为( )
A.23B.25C.30D.35
相关试题