【题目】如图,射线AM上有一点B,AB=6,点C是射线AM上异于B的一点,过C作CD⊥AM,且CD=
AC,过D点作DE⊥AD,交射线AM于E,在射线CD取点F,使得CF=CB,连接AF并延长,交DE于点G,设AC=3x.![]()
(1)当C在B点右侧时,求AD.DF的长.(用关于x的代数式表示)
(2)当x为何值时,△AFD是等腰三角形;
(3)作点D关于AG的对称点D′,连接FD′,GD′,若四边形DFD′G是平行四边形,求x的值.(直接写出答案)
参考答案:
【答案】
(1)
解:∵CD=
,AC=3x,
∴CD=4x,
∵CD⊥AM,
∴∠ACD=90°,
由勾股定理得:AD=5x,
∵AB=6,C在B点右侧,
∴BC=AC﹣AB=3x﹣6,
∵BC=FC=3x﹣6,
∴DF=CD﹣FC=4x﹣(3x﹣6)=x+6
![]()
(2)
解:分两种情况:
①当C在B点的右侧时,
∴AC>AB,
∴F必在线段CD上,
∵∠ACD=90°,
∴∠AFD是钝角,若△ADF为等腰三角形,只可能AF=DF,过F作FN⊥AD于N,如图2,
![]()
∴AN=ND=2.5x,
cos∠ADC=
=
,
,
x=
;
②当C在线段AB上时,同理可知若△ADF为等腰三角形,只可能AF=DF,
i)当CF<CD时,过F作FN⊥AD于N,如图3,
![]()
∵AB=6,AC=3x,
∴BC=CF=6﹣3x,
∴DF=4x﹣(6﹣3x)=7x﹣6,
cos∠ADC=
,
∴
,
x=
,
ii)当CF>CD时,如图4,
![]()
BC=CF=6﹣3x,
∴FD=AD=6﹣3x﹣4x=6﹣7x,
则6﹣7x=5x,
x=
,
综上所述,当x=
或
或
时,△AFD是等腰三角形
(3)
解:∵四边形DFD′G是平行四边形,且DF=D′F,
∴DFD′G是菱形,
∴DF=DG,
∴∠DFG=∠DGF,
∵∠AFC=∠DFG,
∴∠DGF=∠AFC,
∵∠ACD=∠ADG=90°,
∴∠FAC=∠DAG,
即AF平分∠DAC,
过F作FN⊥AD于N,
当C在AB的延长线上时,如图2,
![]()
FN=FC=3x﹣6,DF=x+6,
sin∠CDA=
,
解得:x=4,
当C在AB边上时,如图5,
![]()
FN=FC=6﹣3x,
DF=7x﹣6,
sin∠CDA=
=
,
x=
,
综上所述,若四边形DFD′G是平行四边形,x的值是4或 ![]()
【解析】(1)由已知条件可得:CD=4x,根据勾股定理得:AD=5x,由AB=6且C在B点右侧,可以依次表示BC、CF、DF的长;(2)分两种情况:①当C在B点的右侧时,AF=DF,②当C在线段AB上时,又分两种情况:i)当CF<CD时,如图3,ii)当CF>CD时,如图4,由AF=DF,作等腰三角形的高线FN,由等腰三角形三线合一得:AN=ND=2.5x,利用同角的三角函数列比例式可求得x的值;(3)先根据四边形DFD′G是平行四边形证明它为菱形,由角的关系得:AF平分∠DAC,作辅助线,由角平分线的性质得:FN=FC,根据第2问分两种情况进行计算,根据同角的三角函数列式可求得x的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(
,n),Q(4,m)两点,且tan∠BOP=
: 
(1)求反比例函数和直线的函数表达式;
(2)求△OPQ的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,轮船甲位于码头O的正西方向A处,轮船乙位于码头O的正北方向C处,测得∠CAO=45°,轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km/h和36km/h,经过0.1h,轮船甲行驶至B处,轮船乙行驶至D处,测得∠DBO=58°,此时B处距离码头O多远?(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)

-
科目: 来源: 题型:
查看答案和解析>>【题目】旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金是x(元).发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.当每辆车的日租金为多少元时,每天的净收入最多?(注:净收入=租车收入﹣管理费)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线y=
x﹣1与抛物线y=﹣
x2+bx+c交于A,B两点,点A在x轴上,点B的横坐标为﹣8,点P是直线AB上方的抛物线上的一动点(不与点A,B重合).
(1)求该抛物线的函数关系式;
(2)连接PA、PB,在点P运动过程中,是否存在某一位置,使△PAB恰好是一个以点P为直角顶点的等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由;
(3)过P作PD∥y轴交直线AB于点D,以PD为直径作⊙E,求⊙E在直线AB上截得的线段的最大长度. -
科目: 来源: 题型:
查看答案和解析>>【题目】某中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:
跳绳数/个
81
85
90
93
95
98
100
人 数
1
2
8
11
5
将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).
(1)将表中空缺的数据填写完整,并补全频数分布直方图;
(2)这个班同学这次跳绳成绩的众数是个,中位数是个;
(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于( )

A.28°
B.33°
C.34°
D.56°
相关试题