【题目】如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于( ) ![]()
A.28°
B.33°
C.34°
D.56°
参考答案:
【答案】A
【解析】解:连结OB,如图,![]()
∵AB与⊙O相切,
∴OB⊥AB,
∴∠ABO=90°,
∴∠AOB=90°﹣∠A=90°﹣34°=56°,
∵∠AOB=∠C+∠OBC,
∴∠C+∠OBC=56°,
而OB=OC,
∴∠C=∠OBC,
∴∠C=
×56°=28°.
故选A.
连结OB,如图,根据切线的性质得∠ABO=90°,则利用互余可计算出∠AOB=90°﹣∠A=56°,再利用三角形外角性质得∠C+∠OBC=56°,加上∠C=∠OBC,于是有∠C=
×56°=28°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,射线AM上有一点B,AB=6,点C是射线AM上异于B的一点,过C作CD⊥AM,且CD=
AC,过D点作DE⊥AD,交射线AM于E,在射线CD取点F,使得CF=CB,连接AF并延长,交DE于点G,设AC=3x.
(1)当C在B点右侧时,求AD.DF的长.(用关于x的代数式表示)
(2)当x为何值时,△AFD是等腰三角形;
(3)作点D关于AG的对称点D′,连接FD′,GD′,若四边形DFD′G是平行四边形,求x的值.(直接写出答案) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线y=
x﹣1与抛物线y=﹣
x2+bx+c交于A,B两点,点A在x轴上,点B的横坐标为﹣8,点P是直线AB上方的抛物线上的一动点(不与点A,B重合).
(1)求该抛物线的函数关系式;
(2)连接PA、PB,在点P运动过程中,是否存在某一位置,使△PAB恰好是一个以点P为直角顶点的等腰直角三角形,若存在,求出点P的坐标;若不存在,请说明理由;
(3)过P作PD∥y轴交直线AB于点D,以PD为直径作⊙E,求⊙E在直线AB上截得的线段的最大长度. -
科目: 来源: 题型:
查看答案和解析>>【题目】某中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:
跳绳数/个
81
85
90
93
95
98
100
人 数
1
2
8
11
5
将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).
(1)将表中空缺的数据填写完整,并补全频数分布直方图;
(2)这个班同学这次跳绳成绩的众数是个,中位数是个;
(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c是常数,a>0)的部分图象如图所示,直线x=1是它的对称轴.若一元二次方程ax2+bx+c=0的一个根x1的取值范围是2<x1<3,则它的另一个根x2的取值范围是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】把大小完全相同的6个乒乓球分成两组,每组3个,每组乒乓球上面分别标有数字1,2,3,将这两组乒乓球分别放入两个盒子中搅匀,再从每个盒子中各随机取出1个乒乓球,请用画树状图(或列表)的方法,求取出的2个乒乓球上面数字之和为偶数的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市开展一项自行车旅游活动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向,C地在A地北偏东75°方向.且BC=CD=20km,问沿上述线路从A地到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,
)
相关试题