【题目】如图,在Rt△ABC中,∠ACB=90°,以BC为半径作⊙B,交AB于点C,交AB的延长线于点E,连接CD、CE.
![]()
(1)求证:△ACD∽△AEC;
(2)当
时,求tanE;
(3)若AD=4,AC=4
,求△ACE的面积.
参考答案:
【答案】(1)证明见解析(2)
(3)12![]()
【解析】试题分析:(1)、根据直径所对的圆周角为直角以及BC=CE得出∠ACD=∠E,然后根据∠A为公共角得出三角形相似;(2)、设AC=4k,则BC=3k,则AE=8k,根据三角形相似得出tanE=
=
得出答案;(3)、过点E作EH⊥AC,垂足为H.设⊙B的半径为R,根据Rt△ABC的勾股定理得出R的值,然后根据△ABC∽△AEH得出EH的长度,从而求出△ACE的面积.
试题解析:(1)∵DE为⊙B的直径,
∴∠DCE=90°,
∵∠ACB=90°,∠ACD=∠BCE.
∵BC=CE,
∴∠BCE=∠E,
∴∠ACD=∠E,
又∵∠CAD=∠EAC,
∴△ACD∽△AEC;
(2)∵
,
设AC=4k,则BC=3k,
∴在Rt△ABC中,AB=5k,BD=3k,AE=AB+BE=8k.
由(1)知:△DCE为直角三角形,
则tanE=
.
∵△ACD∽△AEC,
∴
=
=
=
,
即tanE=
=
;
(3)过点E作EH⊥AC,垂足为H.设⊙B的半径为R.
∵在Rt△ABC中,∠ACB=90°,
∴AB2=AC2+BC2,
∴(4+R)2=(4
)2+R2,
解得R=4.
即BC=4,DE=2BC=8,AB=8,AE=12.
∵∠ACB=∠AHE=90°,∠CAB=∠CAE,
∴△ABC∽△AEH,
∴
,
即
,
解得EH=6,
∴△ACE的面积为
AC·EH=
×4
×6=12![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:
①abc>0;②b2=4ac; ③4a+2b+c>0;④3a+c>0,

其中,正确的结论是______.(写出正确结论的序号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:4a3b﹣ab=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某兴趣小组决定去市场购买A,B,C三种仪器,其单价分别为3元,5元,7元,购买这批仪器需花62元;经过讨价还价,最后以每种单价各下降1元成交,结果只花50元就买下了这批仪器.那么A种仪器最多可买( )
A.8件
B.7件
C.6件
D.5件 -
科目: 来源: 题型:
查看答案和解析>>【题目】若规定两数a、b通过运算※得4ab,即a※b=4ab.如2※6=4×2×6=48.若x※x+2※x﹣2※4=0,则x的值为
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
(1)求证:BE=CE.
(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45,原题设其它条件不变,求证:△AEF≌△BCF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为( )
A.﹣1
B.1
C.1或﹣1
D.0.5
相关试题