【题目】重庆某著名景区依托天然河道新开发了一款乘船体验项目.小明乘船由甲地顺流而下到乙地,然后由乙地逆流而上到丙地,然后靠岸乘车离开景点.若水流速度为2km/小时,船在静水中的速度为8km/小时.在整个乘船过程中,轮船与甲地相距的路程S(千米)与轮船出发的时间t(小时)之间的关系如图所示,甲乙两地间的距离为_____千米.
![]()
参考答案:
【答案】12.5或10.
【解析】
需分类讨论:(1)丙在甲地和乙地之间,(2)丙不在甲地和乙地之间,设甲乙两地距离为x,即可解题.
解:根据图形可知甲、丙两地间的距离为2km.
(1)丙在甲地和乙地之间,设甲乙两地距离为x,
则
,
解得:x=12.5.
(2)丙不在甲地和乙地之间,设甲乙两地距离为x,
则
,
解得:x=10.
∴甲乙两地间的距离为12.5km或10km.
故答案为:12.5或10.
-
科目: 来源: 题型:
查看答案和解析>>【题目】每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.
(1)求甲、乙两种型号设备的价格;
(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;
(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC=
, BC=2,以AB
为直径的⊙O分别交AC、BC于点D、E。
(1)求证:E是BC的中点;
(2)连结DE,求证:△CDE∽△CBA;
(3)求△CDE的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD的外侧,作等边△ADE,AC、BE相交于点F,则∠EFC为( )

A.135°B.145°C.120°D.165°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
与x轴交于点A,与直线 y=kx-3交于点C(c,6),直线
与y轴交于点B,连接AB.
(1)求k的值;
(2)求证:∠CAO=∠BAO;
(3)P为OA上一点,连结PB,M为PB中点,延长MO交直线AC于点N,若OP=x,
,求y关于x的函数表达式. -
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线C:y=
x2+bx+c 交
轴于点A(0,-1)且过点
, P是抛物线C上一个动点,过P作PB∥OA,以P为圆心,2为半径的圆交PB于C、D两点(点D位于点C下方).
(1)求抛物线C的解析式;
(2)连接AP交⊙P于点E,连接DE,AC.若ΔACP是以CP为直角边的直角三角形,求∠EDC的度数;
(3)若当点P经过抛物线C上所有的点后,点D随之经过的路线被直线
截得的线段长为8,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】我们知道:有一内角为直角的三角形叫做直角三角形.类似地,我们定义:有一内角为45°的三角形叫做半直角三角形.如图,在平面直角坐标系中,O为原点,A(4,0),B(-4,0),D是y轴上的一个动点,∠ADC=90°(A、D、C按顺时针方向排列), BC与经过A,B,D三点的⊙M交于点E,DE平分∠ADC,连结AE,BD.显然△DCE,△DEF,△DAE是半直角三角形.

(1)求证:△ABC是半直角三角形;
(2)求证:∠DEC=∠DEA;
(3)若点D的坐标为(0,8),
①求AE的长;
②记BC与AD的交点为F,求ΔACF与ΔBCA的面积之比.
相关试题