【题目】解下列方程:
(1)2(10﹣0.5y)=﹣(1.5y+2)
(2)
(x﹣5)=3﹣
(x﹣5)
(3)
﹣1=![]()
(4)x﹣
(x﹣9)=
[x+
(x﹣9)]
(5)
-
=0.5x+2
参考答案:
【答案】(1)y=﹣44;(2)x=8;(3)x=
;(4)x=﹣
;(5)x=
.
【解析】
依据解分式方程的步骤即可解答.
解:(1)去括号得:20﹣y=﹣1.5y﹣2,
移项合并得:0.5y=﹣22,
解得:y=﹣44;
(2)去分母得:x﹣5=9﹣2x+10,
移项合并得:3x=24,
解得:x=8;
(3)去分母得:3x+6﹣12=6﹣4x,
移项合并得:7x=12,
解得:x=
;
(4)去括号得:x﹣
x+1=
x+
x﹣1,
去分母得:9x﹣x+9=3x+x﹣9,
移项合并得:4x=﹣18,
解得:x=﹣
;
(5)方程整理得:4x﹣2﹣
=0.5x+2,
去分母得:12x﹣6﹣5x﹣15=1.5x+6,
移项合并得:5.5x=27,
解得:x=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?
(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;
(2)在x轴上有一点P,使得PA+PB的值最小,请求出点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是某班学生外出乘车、步行、骑车的人数分布直方图和扇形分布图.

(1)求该班有多少名学生?
(2)补上骑车分布直方图的空缺部分;
(3)在扇形统计图中,求步行人数所占的圆心角度数;
(4)若全年级有900人,估计该年级骑车人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的袋子中装有20个球,其中红球6个,白球和黑球若干个,每个球除颜色外完全相同.
(1)小明通过大量重复试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回)发现,摸出的黑球的频率在0.4附近摆动,请你估计袋中黑球的个数.
(2)若小明摸出的第一个球是白球,不放回,从袋中余下的球中再任意摸出一个球,摸出白球的概率是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,若完不成视为违约,甲乙两人经过商量后签订了该合同.
(1)正常情况下,甲乙两人能否履行该合同?为什么?
(2)现在两人合作了9天,因别处有急事,必需调走1人,问两人能否违约?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O为原点,A,B为数轴上两点,AB=15,且OA:OB=2
(1)A,B对应的数分别为 , .
(2)点A,B分别以2个单位/秒和5个单位/秒的速度相向而行,则几秒后A,B相距1个单位长度?
(3)点AB以(2)中的速度同时向右运动,点P从原点O以4个单位秒的速度向右运动,是否存在常数m,使得3AP+2PB﹣mOP为定值?若存在,请求出m值以及这个定值;若不存在,请说明理由.

相关试题