【题目】如图,一次函数y1=k1x+b与反比例函数
的图象相交于A,B两点,且与坐标轴的交点为(﹣6,0),(0,6),点B的横坐标为﹣4. ![]()
(1)试确定反比例函数的解析式;
(2)求△AOB的面积;
(3)直接写出不等式
的解.
参考答案:
【答案】
(1)解:设一次函数解析式为y=kx+b,
∵一次函数与坐标轴的交点为(﹣6,0),(0,6),
∴ ![]()
∴
,
∴一次函数关系式为:y=x+6,
∴B(﹣4,2),
∴反比例函数关系式为:
;
(2)解:∵点A与点B是反比例函数与一次函数的交点,
∴可得:x+6=﹣
,
解得:x=﹣2或x=﹣4,
∴A(﹣2,4),
∴S△AOB=6×6÷2﹣6×2=6;
(3)解:观察图象,易知
的解集为:﹣4<x<﹣2.
【解析】(1)根据待定系数法就可以求出函数的解析式;(2)求△AOB的面积就是求A,B两点的坐标,将一次函数与反比例函数的解析式组成方程即可求得;(3)观察图象即可求得一次函数比反比例函数大的区间.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法),并根据要求填空:

(1)作∠ABC的平分线BD交AC于点D;
(2)作线段BD的垂直平分线交AB于点E,交BC于点F.由(1)、(2)可得:线段EF与线段BD的关系为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】我市某中学艺术节期间,向学校学生征集书画作品.九年级美术李老师从全年级14个班中随机抽取了A、B、C、D 4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.

(1)李老师采取的调查方式是(填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共件,其中B班征集到作品 , 请把图2补充完整.
(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,若MA=MC.

(1)求证:CD=AN;
(2)若AC⊥DN,∠CAN=30°,MN=1,求四边形ADCN的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB.

(1)求证:AE是⊙O的切线;
(2)已知点B是EF的中点,求证:△EAF∽△CBA.
(3)已知AF=4,CF=2,在(2)的条件下,求AE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒
个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).
(1)当t=3秒时,直接写出点N的坐标;
(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;
(3)当t为何值时,△MNA是一个等腰三角形? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1 , 弧K1K2 , 弧K2K3 , 弧K3K4 , 弧K4K5 , 弧K5K6 , …的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1 , L2 , L3 , L4 , L5 , L6 , ….当AB=1时,L2016等于( )

A.
B.
C.
D.
.
相关试题