【题目】如图,直线AB、CD相交于点O,OE是∠AOD的平分线,若∠AOC=60°,OF⊥OE.
(1)判断OF把∠AOC所分成的两个角的大小关系并证明你的结论;
(2)求∠BOE的度数.
![]()
参考答案:
【答案】(1)∠AOF=∠COF,理由详见解析;(2)∠BOE=120°.
【解析】
(1)求出∠AOD度数,求出∠AOE,求出∠AOF,即可得出答案;
(2)求出∠BOD度数,求出∠DOE度数,相加即可得出答案.
(1)答:∠AOF=∠COF,
证明:∵O是直线CD上一点,
∴∠AOC+∠AOD=180°,
∵∠AOC=60°,
∴∠AOD=180°﹣60°=120°,
∵OE平分∠AOD,
∴
.
∵OF⊥OE,
∴∠FOE=90°
∴∠AOF=∠FOE﹣∠AOE=90°﹣60°=30°,
∴∠COF=∠AOC﹣∠AOF=60°﹣30°=30°,
∴∠AOF=∠COF.
(2)解:∵∠AOC=60°,
∴∠BOD=∠AOC=60°,∠AOD=180°﹣60°=120°,
∵OE是∠AOD的平分线,
∴∠DOE=
∠AOD=60°,
∴∠BOE=∠BOD+∠DOE=60°+60°=120°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上两点A,B对应的数分别为﹣4,8.
(1)如图1,如果点P和点Q分别从点A,B同时出发,沿数轴负方向运动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒6个单位.
①A,B两点之间的距离为 .
②当P,Q两点相遇时,点P在数轴上对应的数是 .
③求点P出发多少秒后,与点Q之间相距4个单位长度?
(3)如图2,如果点P从点A出发沿数轴的正方向以每秒2个单位的速度运动,点Q从点B出发沿数轴的负方向以每秒6个单位的速度运动,点M从数轴原点O出发沿数轴的正方向以每秒1个单位的速度运动,若三个点同时出发,经过多少秒后有MP=MQ?

-
科目: 来源: 题型:
查看答案和解析>>【题目】某文具店到批发市场选购A、B两种文具,批发价分别为14元/个、10元/个.若该店零售A、B两种文具的每天销量y(个)与零售价x(元/个)都是一次函数y=kx+20的关系,如图所示.

(1)求此一次函数的关系式;
(2)现批发市场进行促销活动,凭会员卡(240元/张)在该批发市场购买所有物品均进行打折优惠,若文具店购买A、B两种文具各50个,问打折小于多少折时,采用购买会员卡的方式合算;
(3)在文具店不购买会员卡的情况下,若A种文具零售价比B种文具零售价高2元/个,求这两种文具每天的销售总利润W(元)与A种文具零售价x(元/个)之间的函数关系式,并说明当A种文具的零售价为多少时,每天的销售利润最大. (说明:本题不要求写出自变量x的取值范围) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点A、B、C、D、E在同一直线上,且AC=BD,E是线段BC的中点.

(1)点E是线段AD的中点吗?说明理由;
(2)当AD=10,AB=3时,求线段BE的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】点A的坐标为(﹣2,﹣1),点B的坐标为(0,﹣2),若将线段AB平移至A′B′的位置,点A′的坐标为(a,2),点B′的坐标为(1,b),则a+b的值为( )
A. 0 B. 2 C. 4 D. 5
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,CO⊥AB于点O,CD是⊙O的切线,切点为D.连接BD,交OC于点E.

(1)求证:∠CDE=∠CED;
(2)若AB=13,BD=12,求DE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】某银行去年新增加居民存款10亿元人民币.
(1)经测量,100张面值为100元的新版人民币大约厚0.9厘米,如果将10亿元面值为100元的新版人民币摞起来,大约有多高?
(2)一台激光点钞机的点钞速度是8×104张/时,按每天点钞5小时计算,如果让点钞机点一遍10亿元面值为100元的新版人民币,点钞机大约要点多少天?

相关试题