【题目】如图,已知FG⊥AB,CD⊥AB,垂足分别为G,D,∠1=∠2,
求证:∠CED+∠ACB=180°,
请你将小明的证明过程补充完整.
证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)
∴∠FGB=∠CDB=90°( ).
∴GF∥CD( )
∵GF∥CD(已证)
∴∠2=∠BCD( )
又∵∠1=∠2(已知)
∴∠1=∠BCD( )
∴ ( )
∴∠CED+∠ACB=180°( )
![]()
参考答案:
【答案】见解析.
【解析】
根据同位角相等两直线平行可得GF∥CD,然后根据两直线平行同位角相等得出∠2=∠BCD,根据已知进一步得出∠1=∠BCD,即可证得DE∥BC,得出∠CED+∠ACB=180°.
证明:∵FG⊥AB,CD⊥AB,垂足分别为G,D(已知)
∴∠FGB=∠CDB=90°(垂直定义).
∴GF∥CD(同位角相等,两直线平行),
∵GF∥CD(已证),
∴∠2=∠BCD(两直线平行,同位角相等),
又∵∠1=∠2(已知),
∴∠1=∠BCD(等量代换),
∴DE∥BC(内错角相等,两直线平行)
∴∠CED+∠ACB=180°(两直线平行,同旁内角互补),
故答案为:垂直定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;DE∥BC;内错角相等,两直线平行;两直线平行,同旁内角互补.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,∠BAC=36°,CD是∠ACB的平分线交AB于点D,过点A作AE∥BC,交CD的延长线于点E.

(1)求∠ADC的度数;
(2)求证:AE=AC
(3)试问△ADE是等腰三角形吗?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列计算过程,猜想立方根.
=1
=8
=27
=64
=125
=216
=343
=512
=729 (1)小明是这样试求出19683的立方根的,先估计19683的立方根的个位数, 猜想它的个位数为 , 又由
<19000<
,猜想19683的立方根十位数为 ,验证得19683的立方根是 .(2)请你根据(1)中小明的方法,完成如下填空:
①
= ; ②
= ;③
= . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(a,b),且a=
﹣3.(1)直接写出点C的坐标 ;
(2)直接写出点E的坐标 ;
(3)点P是CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x,y,z之间的数量关系,并证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,△ABC中,BO平分∠ABC,CO平分∠ACB,∠A=56°,求∠BOC的度数;
(2)如图2,若点P为△ABC外部一点,PB平分∠ABC,PC平分外角∠ACD,先写出∠A和∠P的数量关系,并证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
的图象与反比例函数
(
为常数且
)的图象交于
,
两点,与
轴交于点
.
(1)求此反比例函数的表达式;
(2)若点
在
轴上,且
,求点
的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,BD=CE.

(1)求证:DE=EF;
(2)当∠A=44°时,求∠DEF的度数;
(3)当∠A等于多少度时,△DEF成为等边三角形?试证明你的结论.
相关试题