【题目】用“”规定一种新运算:对于任意有理数a和b,规定ab=ab+2ab+a. 如:13=1×3+2×1×3+1=16
(1)求3(﹣1)的值;
(2)若(a+1)2=36,求a的值;
(3)若m=2x,n=(
x)3(其中x为有理数),试比较m、n的大小.
参考答案:
【答案】(1)0,(2)a=3,(3)m>n.
【解析】
(1)根据运算的定义展开即可解题,
(2)根据运算的定义展开左侧,构成一次方程,求解方程即可,
(3)根据运算的定义展开求出m,n,利用作差法表示出m-n=2x+2,最后根据非负性即可解题.
解:(1)由题可知, 3(﹣1)=3-6+3=0,
(2)(a+1)×4+4(a+1)+(a+1)=36,
整理得9(a+1)=36
解得a=3,
(3)m=2x=2x+4x+2, n=(
x)3=
x+
x+
x =4x,
∴m-n=2x+2>0,
∴m>n.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为弘扬中华传统文化,了解学生整体听写能力,某校组织全校1000名学生进行一次汉字听写大赛初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:
分组/分
频数
频率
50≤x<60
6
0.12
60≤x<70
a
0.28
70≤x<80
16
0.32
80≤x<90
10
0.20
90≤x≤100
c
b
合计
50
1.00
(1)表中的a=______,b=______,c=______;
(2)把上面的频数分布直方图补充完整,并画出频数分布折线图;
(3)如果成绩达到90及90分以上者为优秀,可推荐参加进入决赛,那么请你估计该校进入决赛的学生大约有多少人.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,有一块Rt△ABC的纸片,∠ABC=900,AB=6,BC=8,将△ABC沿AD折叠,使点B落在AC上的E处,则BD的长为( )

A.3B.4C.5D.6
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:关于x的函数y=kx2+k2x﹣2的图象与y轴交于点C,
(1)当k=﹣2时,求图象与x轴的公共点个数;
(2)若图象与x轴有一个交点为A,当△AOC是等腰三角形时,求k的值.
(3)若x≥1时函数y随着x的增大而减小,求k的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校需要置换一批推拉式黑板,经了解,现有甲、乙两厂家报价均为200元/米2,且提供的售后服务完全相同,为了促销,甲厂家表示,每平方米都按七折计费;乙厂家表示,如果黑板总面积不超过20米2,每平方米都按九折计费,超过20米2,那么超出部分每平方米按六折计费.假设学校需要置换的黑板总面积为x米2.
(1)请分别写出甲、乙两厂家收取的总费用y(元)与x(米2)之间的函数关系式;
(2)请你结合函数图象的知识帮助学校在甲、乙两厂家中,选择一家收取总费用较少的.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB,CD相交于点O,OE平分∠AOD,OF⊥OC,

(1)图中∠AOF的余角是 (把符合条件的角都填出来);
(2)如果∠AOC=160°,那么根据 可得∠BOD= 度;
(3)如果∠1=32°,求∠2和∠3的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标中,抛物线y=ax2-2ax-3a(a≠0)与x轴交于A、B(A在B的左侧),与y轴交于点C,且OC=3OA.
(1)如图(1)求抛物线的解析式;
(2)如图(2)动点P从点O出发,沿y轴正方向以每秒1个单位的速度移动,点D是抛物线顶点,连接PB、PD、BD,设点P运动时间为t(单位:秒),△PBD的面积为S,求S与t的函数关系式;
(3)如图(3)在(2)的条件下,延长BP交抛物线于点Q,过点O作OE⊥BQ,垂足为E,连接CE、CB,若CE=CB,求t值,并求出此时的Q点坐标.



相关试题