【题目】如图△ABC中,点D是边AB的中点,CE∥AB,且AB=2CE,连结BE、CD。
![]()
(1)求证:四边形BECD是平行四边形;
(2)用无刻度的直尺画出△ABC边BC上的中线AG(保留画图痕迹)
参考答案:
【答案】(1)证明见解析 (2)答案见解析
【解析】
(1)利用线段中点的定义可证得AB=2BD,再结合已知证明BD=CE,然后利用有一组对边平行且相等的四边形是平行四边形,可得结论;
(2)连接DE交BC于点G ,连接AG,利用平行四边形的对角线互相平分,可得点G时BC的中点,利用三角形的中线的定义,可知AG是中线.
(1)解: ∵点D是边AB的中点,
∴AB=2BD,
∵AB=2CE,
∴BD=CE;
∵CE∥AB
∴四边形BECD是平行四边形。
(2)解: 连接DE交BC于点G ,连接AG,
![]()
∵四边形BECD是平行四边形,
∴BG=CG,
∴AG是△ABC的BC边上的中线,
即AG就是所求作的图形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,四边形ABCD中,AB∥CD,AB=8,DC=4,点M、N分别为边AB、DC的中点,点P从点D出发,以每秒1个单位的速度从D→C方向运动,到达点C后停止运动,同时点Q从点B出发,以每秒3个单位的速度从B→A方向运动,到达点A后立即原路返回,点P到达点C后点Q同时停止运动,设点P、Q运动的时问为t秒,当以点M、N、P、Q为顶点的四边形为平行四边形时,t的值为________。

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一次函数图像过点P(0,6),且平行于直线y=-2x
(1)求该一次函数的解析式
(2)若点A(
,a)、B(2,b)在该函数图像上,试判断a、b的大小关系,并说明理由。 -
科目: 来源: 题型:
查看答案和解析>>【题目】某检修小组乘一辆汽车沿公路东西方向检修线路,约定向东为正,某天从A地出发到收工时行走记录为(单位:千米):
+15、—2、+5、—1、—3、—2、+4、—5
(1)计算收工时,检修小组在A地的哪一边,距A地多远?
(2)若每千米汽车耗油量为0.4升,求出发到收工检修小组耗油多少升?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上有两点A、B,点A表示的数是4,点B表示的数是﹣11,点C是数轴上一动点.

(1)如图1,若点C在点B的左侧,且BC:AB=3:5,求点C到原点的距离.
(2)如图2,若点C在A、B两点之间时,以点C为折点,将此数轴向右对折,当A、B两点之间的距离为1时,求C点在数轴上对应的数是多少?
(3)如图3,在(1)的条件下,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度的2倍少5个单位长度/秒.经过4秒,点P、Q之间的距离是点Q、R之间距离的一半,求动点Q的速度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC,按如下步骤作图:
①分别以A,C为圆心,大于
的长为半径画弧,两弧交于P,Q两点; ②作直线PQ,分别交AB,AC于点E,D,连接CE;
③过C作CF∥AB交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】经过建设者三年多艰苦努力地施工,贯通我市A、B两地又一条高速公路全线通车.已知原来A地到B地普通公路长150km,高速公路路程缩短了30km,如果一辆小车从A地到B地走高速公路的平均速度可以提高到原来的1.5倍,需要的时间可以比原来少用1小时.求小车走普通公路的平均速度是多少?
相关试题