【题目】如图,在等边△ABC中,AD⊥BC于D,若AB=4cm,AD=2
cm,E为AB的中点,P为AD上一点,PE+PB的最小值为 . ![]()
参考答案:
【答案】2 ![]()
【解析】解:连接EC交于AD于点P. ![]()
∵AB=AC,BD=DC,
∴AD⊥BC.
∴AD是BC的垂直平分线.
∴PB=PC.
∴PE+PB=EP+PC=EC.
∵△ABC为等边三角形,
∴∠EAC=∠ACD=60°,AB=BC.
∵点E和点D分别是AB和BC的中点,
∴AE=DC.
在△ACE和△CAD中,
,
∴△ACE≌△CAD.
∴EC=AD=2
.
故答案为:2
.
连接EC交于AD于点P,由等腰三角形三线和一的性质可知AD是BC的垂直平分线,从而可证明BP=PC,故此PE+PB的最小值=EC,然后证明△ACE≌△CAD,从而得到EC=AD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件)
…
30
40
50
60
…
每天销售量y(件)
…
500
400
300
200
…
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A的坐标为(﹣8,0),点P的坐标为(-
,0),直线y=
x+b过点A,交y轴于点B,以点P为圆心,以PA为半径的圆交x轴于点C.(1)判断点B是否在⊙P上?说明理由.
(2)求过A、B、C三点的抛物线的解析式;并求抛物线与⊙P另外一个交点为D的坐标.
(3)⊙P上是否存在一点Q,使以A、P、B、Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的内角∠ABC与外角∠ACD的平分线交于点E,且CE∥AB,AC与BE交于点E,则下列结论错误的是( )

A.CB=CE
B.∠A=∠ECD
C.∠A=2∠E
D.AB=BF -
科目: 来源: 题型:
查看答案和解析>>【题目】若x2+ax+9=(x+3)2 , 则a的值为( )
A.3
B.±3
C.6
D.±6 -
科目: 来源: 题型:
查看答案和解析>>【题目】观察等式(2a﹣1)a+2=1,其中a的取值可能是( )
A.﹣2B.1或﹣2C.0或1D.1或﹣2或0
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:

(1)本次被调查的学生有 名;
(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;
(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?
相关试题