【题目】抛物线C1:y=a(x+1)(x﹣3a)(a>0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,﹣3)
(1)求抛物线C1的解析式及A,B点坐标;
(2)求抛物线C1的顶点坐标;
(3)将抛物线C1向上平移3个单位长度,再向左平移n(n>0)个单位长度,得到抛物线C2 , 若抛物线C2的顶点在△ABC内,求n的取值范围. (在所给坐标系中画出草图C1)![]()
参考答案:
【答案】
(1)解:∵抛物线C1:y=a(x+1)(x﹣3a)y轴交于点C(0,﹣3),
∴﹣3=a(0+1)(0﹣3a),
解得a=1(舍去负值).
∴抛物线C1的解析式为:y=(x+1)(x﹣3).
∴A(﹣1,0),B(3,0)
(2)解:∵y=(x+1)(x﹣3)=(x﹣1)2﹣4,
∴该抛物线的解析式为y=(x﹣1)2﹣4,则该抛物线的顶点坐标为(1,﹣4)
(3)解:将(1)中求得的抛物线向上平移3个单位长度,
再向左平移n(n>0)个单位长度得到新抛物线y=(x﹣1+n)2﹣1,
∴平移后抛物线的顶点坐标是(1﹣n,﹣1),
∴﹣
<1﹣n<2,
解得﹣1<n<
,
∵n>0,
∴0<n<
.
![]()
【解析】(1)根据已知点的坐标代入已知的函数的解析式即可利用待定系数法确定二次函数的解析式;(2)由(1)中的函数解析式即可求出抛物线C1的顶点坐标;(3)首先根据平移确定平移后的函数的解析式,然后确定抛物线C2的顶点坐标;结合图形确定n的取值范围即可.
【考点精析】利用二次函数图象的平移和抛物线与坐标轴的交点对题目进行判断即可得到答案,需要熟知平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF 与AB、CD的延长线分别
交于E、F.
(1)证明:△BOE≌△DOF.
(2)当EF与AC满足什么条件时,四边形AECF是菱形,为什么?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上三点M,O,N对应的数分别为-1,0,3,点P为数轴上任意一点,其对应的数为x.

(1)MN的长为 ;
(2)如果点P到点M、点N的距离相等,那么x的值是 ;
(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由.
(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
和
都是等腰直角三角形,
,四边形
是平行四边形,下列结论中错误的是( )
A.
以点
为旋转中心,逆时针方向旋转
后与
重合B.
以点
为旋转中心,顺时针方向旋转
后与
重合C. 沿
所在直线折叠后,
与
重合D. 沿
所在直线折叠后,
与
重合 -
科目: 来源: 题型:
查看答案和解析>>【题目】(8分)如图所示,在四边形ABCD中,AB=2
,BC=2,CD=1,AD=5,且∠C=90°,求四边形ABCD的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个Rt△DEF直角边DE落在AB上,过A点作射线AC与斜边EF平行,已知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)

(1)若点D与点B重合,当t=5时,连接QE,PF,此时△AQE为三角形、四边形QEFP为形;
(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止. ①如图①,若M为EF中点,当D、M、Q三点在同一直线上时,求t的值;
②在运动过程中,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切时,求运动时间t.
-
科目: 来源: 题型:
查看答案和解析>>【题目】学校为了丰富学生课余活动开展了一次“校园歌手大奖赛”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:
成绩(分)
9.40
9.50
9.60
9.70
9.80
9.90
人数
2
3
5
4
3
1
则入围同学决赛成绩的中位数和众数分别是( )
A.9.70,9.60
B.9.60,9.60
C.9.60,9.70
D.9.65,9.60
相关试题