【题目】如图,已知∠B+∠BCD=180°,∠B=∠D.
![]()
求证:∠E=∠DFE.
证明:∵∠B+∠BCD=180°( 已知 ),
∴AB∥CD ( )
∴∠B=_______( )
又∵∠B=∠D(已知 ),
∴∠D=_______( )
∴AD∥BE( )
∴∠E=∠DFE( )
参考答案:
【答案】同旁内角互补,两直线平行; ∠DCE;两直线平行,同位角相等; ∠DCE;等量代换;内错角相等,两直线平行; 两直线平行,内错角相等.
【解析】分析:根据平行线的判定以及平行线的性质,逐步进行分析解答即可得出答案.
本题解析:
证明:∵∠B+∠BCD=180(已知),
∴AB∥CD(同旁内角互补,两直线平行),
∴∠B=∠DCE(两直线平行,同位角相等),
又∵∠B=∠D(已知),
∴∠DCE=∠D(等量代换),
∴AD∥BE(内错角相等,两直线平行),
∴∠E=∠DFE(两直线平行,内错角相等).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校计划利用一片空地建一个学生自行车车棚,其中一面靠墙,这堵墙的长度为12米.计划建造车棚的面积为80平方米,已知现有的木板材料可使新建板墙的总长为26米.
(1)为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门,那么这个车棚的长和宽分别应为多少米?
(2)如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路,使得停放自行车的面积为54平方米,那么小路的宽度是多少米?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,(﹣3,3)一定在( )
A.第一象限B.第二象限C.第三象限D.第四象限
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,每个小正方形网格的边长为单位1,格点三角形(顶点是网格线的交点的三角形)ABC如图所示.
(1)请画出△ABC向右平移4个单位长度后的△A1B1C1,并写出点C1的坐标;
(2)请计算△ABC的面积;

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,图1是一个长为2m,宽为2n的长方形,沿图中的虚线剪成四个全等的小长方形,再按图2围成一个较大的正方形.

(1)图2中的阴影部分的正方形的边长可表示为________;
(2)请用两种不同的方法表示图2中阴影部分的面积: 方法1:________;
方法2:________;
(3)观察图2,请你写出下列三个代数式之间的等量关系: 代数式:(m+n)2 , (m﹣n)2 , mn.________;
(4)根据(3)题中的等量关系,解决问题: 若m+n=5,mn=4,求m﹣n的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的大小关系是______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,反比例函数y=
与反比例函数y=k2
+b的图象的交点为A(m,1)、B(-2,n),OA与
轴正方向的夹角为α,且tanα=
。(1)求反比例函数及一次函数的表达式;
(2)设直线AB与x轴交于点C,且AC与x轴正方向的夹角为β,求tanβ的值。

相关试题