【题目】如图.已知在平面直角坐标系中.点 A(0,m),点 B(n,0),D(2m,n),且 m、n 满足(m﹣2)2+
=0,将线段AB向左平移,使点B与点 O重合,点C与点A对应.
(1)求点C、D的坐标;
(2)连接CD,动点P从点O出发,以每秒1个单位的速度,沿射线OB方向运动,设点P运动时间为t秒,是否存在某一时刻,使 SPCD=4SAOB,若存在,请求出t值,并写出P点坐标;若不存在,请说明理由.
![]()
参考答案:
【答案】(1)点C的坐标为(﹣4,2);(2)P点坐标为(4,0).
【解析】
(1)由(m﹣2)2+
=0,得m=2,n=4,则A(0,2),B(4,0),D(4,4),
再由平移的性质可得点C的坐标为(﹣4,2);
(2)根据题意得[4﹣(﹣4)+t﹣(﹣4)]×4÷2﹣[4﹣(﹣4)]×(4﹣2)÷2﹣[t﹣(﹣4)]×2÷2,解得t=4,则P点坐标为(4,0).
(1)∵(m﹣2)2+
=0,
∴m﹣2=0,n﹣4=0,
解得m=2,n=4,
∴A(0,2),B(4,0),D(4,4),
∵将线段AB向左平移,使点B与点O重合,点C与点A对应,
∴点C的坐标为(﹣4,2);
(2)存在.
如果SPCD=4SAOB,则有:
[4﹣(﹣4)+t﹣(﹣4)]×4÷2﹣[4﹣(﹣4)]×(4﹣2)÷2﹣[t﹣(﹣4)]×2÷2
=4×(4×2÷2),
解得t=4,
则P点坐标为(4,0).
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在
中,
是
边上的一点,
是
的中点,过点
作
的平行交
延长点
,且
,连接
.
(1)求证:
是
的中点;(2)若
,试判断四边形
的形状,并证明你的结论. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4
,则S阴影=( ) 
A.2π??
B.
π??
C.
π??
D.
π -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB、AD是⊙O的弦,点C是DO的延长线与弦AB的交点,∠ABO=30°,OB=2.

(1)求弦AB的长;
(2)若∠D=20°,求∠BOD的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是直立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为( )

A.4
米
B.(2
+2)米
C.(4
﹣4)米
D.(4
﹣4)米 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小颖利用一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE为5m,AB为1.5m(即小颖的眼睛距地面的距离),那么这棵树高是( )

A.4m
B.
m
C.(5
+
)m
D.(
+
)m -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF

(1)求证:BE = DF;
(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
相关试题