【题目】某文具店二月份共销售各种水笔m支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份共销售各种水笔________支.
参考答案:
【答案】1.1m
【解析】
根据题意可以求得三月份的销售量,从而可以解答本题.
解:由题意可得,
m(1+10%)=1.1m(支),
故答案为:1.1m.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知射线CB∥OA,∠C=∠OAB,
(1)求证:AB∥OC;
(2)如图2,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
①当∠C=110°时,求∠EOB的度数.
②若平行移动AB,那么∠OBC :∠OFC的值是否随之发生变化?若变化,找出变
化规律;若不变,求出这个比值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图-1,△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,E在线段AC上,连接AD,BE的延长线交AD于F.
(1)猜想线段BE,AD的数量关系和位置关系:________________________(不必证明);
(2)当点E为△ABC内部一点时,使点D和点E分别在AC的两侧,其它条件不变.
① 请你在图-2中补全图形;
②(1)中结论成立吗?若成立,请证明;若不成立,请说明理由.



-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系呢?

(1)通过观察、实验提出猜想:∠ACB与∠ABC的数量关系,用等式表示为: .
(2)小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:如图2,延长AC到F,使CF=CD,连接DF.通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.
想法2:在AB上取一点E,使AE=AC,连接ED,通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB与∠ABC的数量关系.
请你参考上面的想法,帮助小明证明猜想中∠ACB与∠ABC的数量关系(一种方法即可).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠A=90°,∠AOB=30°,AB=2,△A′OB′可以看作是由△AOB绕点O逆时针旋转60°得到的,求点A′与点B的距离

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场家电专柜购进一批甲,乙两种电器,甲种电器共用了10 350元,乙种电器共用了9 600元,甲种电器的件数是乙种电器的1.5倍,甲种电器每件的进价比乙种电器每件的进价少90元.
(1)甲、乙两种电器各购进多少件?
(2)商场购进两种电器后,按进价提高40%后标价销售,很快全部售完,求售完这批电器商场共获利多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,将笔记本活页一角折过去,使角的顶点A落在
处,BC为折痕。(1)图①中,若∠1=30°,求∠
的度数;(2)如果又将活页的另一角斜折过去,使BD边与BA重合,折痕为BE,如图②所示,∠1=30°,求∠2以及∠
的度数;(3)如果在图②中改变∠1的大小,则
的位置也随之改变,那么问题(2)中∠
的大小是否改变?请说明理由。

相关试题