【题目】如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)请判断AB与CD的位置关系并说明理由;
(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并说明理由;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.
![]()
参考答案:
【答案】(1)AB∥CD,理由见解析;(2)∠BAE+
∠MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC,理由见解析
【解析】
(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论;
(2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;
(3)根据AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.
(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD;
(2)∠BAE+
∠MCD=90°;
过E作EF∥AB,
![]()
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD,
∴∠BAE+
∠MCD=90°;
(3)∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将下列各数填到相应的集合里:
-
,+5,-9,π,
,19, 1.2, 0,-5.26,0.8256…,5.3正数集合﹛ …﹜
负数集合﹛ …﹜
整数集合﹛ …﹜
分数集合﹛ …﹜
有理数集合﹛ …﹜
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知□ABCD边BC在x轴上,顶点A在y轴上,对角线AC所在的直线为y=
+6,且AC=AB,若点P从点A出发以1cm/s的速度向终点O运动,同时点Q从点C出发以2cm/s的速度沿射线CB运动,当点P到达终点O时,点Q也随之停止运动.设点P的运动时间为t(s).(1)直接写出顶点D的坐标(______,______),对角线的交点E的坐标(______,______);
(2)求对角线BD的长;
(3)是否存在t,使S△POQ=
SABCD,若存在,请求出的t值;不存在说明理由.(4)在整个运动过程中,PQ的中点到原点O的最短距离是______cm,(直接写出答案)

-
科目: 来源: 题型:
查看答案和解析>>【题目】立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩如表:
成绩(m)
2.3
2.4
2.5
2.4
2.4
则下列关于这组数据的说法,正确的是( )
A.众数是2.3B.平均数是2.4
C.中位数是2.5D.方差是0.01
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算
(1)

(2)

(3)0-(-5)
(4)-2.5-5.9
(5)12-(-18)+(-7)-15
(6)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正方形ABCD中,P为直线AD上一点,以PD为边做正方形PDEF,使点E在线段CD的延长线上,连接AC、AF.若
,则
的度数为________. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,点D.E分别在边AB,AC上,DE∥BC,按下列要求画图并填空

(1)过点E画直线BC的垂线交直线BC于点F;
(2)点D到直线______的距离等于线段EF的长度
(3)联结BE.CD,EBC的面积______DBC的面积.
相关试题