【题目】如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,则图中阴影部分的面积为( )

A.
B.
C.
D.


参考答案:

【答案】C
【解析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.

如图,设B′C′与CD的交点为E,连接AE,

在Rt△AB′E和Rt△ADE中,

∴Rt△AB′E≌Rt△ADE(HL),

∴∠DAE=∠B′AE,

∵旋转角为30°,

∴∠DAB′=60°,

∴∠DAE= ×60°=30°,

∴DE=1× =

∴阴影部分的面积=1×1﹣2×( ×1× )=1﹣

故答案为:C.

利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.

关闭