【题目】如图,在△ABC中,DE垂直平分BC,垂足为点D,交AB于点E,且AD=AC,EC交AD于点F,下列说法:
①△ABC∽△FDC;②点F是线段AD的中点;③S△AEF:S△AFC=1:4;④若CE平分∠ACD,则∠B=30°,其中正确的结论有_____(填写所有正确结论的序号).
![]()
参考答案:
【答案】①②④
【解析】解:∵AD=AC,
∴∠FDC=∠ACB,
∵DE垂直平分BC,
∴EB=EC,
∴∠B=∠ECB,
∴△ABC∽△FCD,故①正确;
∵△ABC∽△FCD,
∴
,
∴DF=
AC=
AD,故②正确;
如图,过F作FG∥BC交AB于G,则
![]()
∵F是AD的中点,
∴
,
∴GF=
BD=
BC,
∵GF∥BC,
∴
,
∴EF=
EC,即EF=
CF,
∴EF:FC=1:3,
∴S△AEF:S△AFC=1:3,故③错误;
∵CF平分∠ACD,
∴∠ACE=∠BCE=∠B,
设∠ACE=∠BCE=∠B=α,则∠ACD=2α=∠ADC,
∴∠BAD=∠ADC﹣∠B=α,
∴∠B=∠BAD,
∴BD=AD=CD,
∴∠DAC=∠DCA=2α,
∵△ABC中,∠B+∠BAC+∠BCA=180°,
∴α+(a+2α)+2α=180°,
∴α=30°,即∠B=30°,故④正确;
故答案为:①②④.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.
(1)①若∠DCB=45°,则∠ACB的度数为 .
②若∠ACB=140°,则∠DCE的度数为 .
(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.
(3)当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值(不必说明理由).

-
科目: 来源: 题型:
查看答案和解析>>【题目】2013年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟),则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是( )
成绩(个/分钟)
140
160
169
170
177
180
人数
1
1
1
2
3
2
A. 众数是177 B. 平均数是170 C. 中位数是173.5 D. 方差是135
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(如图1所示)在△ABC中,∠ACB=90°,∠A=30°,BC=4,沿斜边AB的中线CD把这个三角形剪成△AC1D1和△BC2D2两个三角形(如图2所示).将△AC1D1沿直线D2B方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,平移停止.设平移距离D1D2为x,△AC1D1和△BC2D2的重叠部分面积为y,在y与x的函数图象大致是( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,分别设P,Q,E,F为边AB,BC,AD,CD的中点,设T为线段EF的三等分点,则△PQT与ABCD的面积之比是______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四点A、B、C、D;
(1)画射线AD;(不需写作图过程)
(2)求作点P,使PA+PB+PC+PD的值最小;(不需写作图过程)
(3)在(2)的条件下,若S△ABP=2,S△ADP=6,S△BCP=1.5,则S△DCP= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,将笔记本活页一角折过去,使角的顶点A落在A′处,BC为折痕;
(1)图①中,若∠1=30°,则∠A′BD=_____;
(2)如果在图②中改变∠1的大小,则BA的位置也随之改变,又将活页的另一角斜折过去,使BD边与BA′重合,折痕为BE.那么∠CBE的度数是否会发生变化呢?请说明理由.

相关试题