【题目】2013年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟),则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是( )
成绩(个/分钟) | 140 | 160 | 169 | 170 | 177 | 180 |
人数 | 1 | 1 | 1 | 2 | 3 | 2 |
A. 众数是177 B. 平均数是170 C. 中位数是173.5 D. 方差是135
参考答案:
【答案】D
【解析】A、这组数据中177出现次数最多,即众数为177,此选项正确;
B、这组数据的平均数是:(140+160+169+170×2+177×3+180×2)÷10=170,此选项正确;
C、∵共有10个数,
∴中位数是第5个和6个数的平均数,
∴中位数是(170+177)÷2=173.5;此选项正确;
D、方差=
[(140﹣170)2+(160﹣170)2+(169﹣170)2+2×(170﹣170)2+3×(177﹣170)2+2×(180﹣170)2]=134.8;此选项错误;
故选:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】课本中有一探究活动:如图1,有甲、乙两个三角形,甲三角形内角分别为10°,20°,150°;乙三角形内角分别为80°,25°,75°.你能把每一个三角形分成两个等腰三角形吗?画一画,并标出每个等腰三角形顶角的度数.
(1)小明按要求画出了图1中甲图的分割线,请你帮他作出图1中乙图的分割线;
(2)小明进一步探究发现:能将一个顶角为108°的等腰三角形分成三个等腰三角形;请在图2中用两种不同的方法画出分割线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种方法)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
(1)用含x的代数式表示线段CF的长;
(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设
=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是
时,求AB的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.
(1)①若∠DCB=45°,则∠ACB的度数为 .
②若∠ACB=140°,则∠DCE的度数为 .
(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.
(3)当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值(不必说明理由).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(如图1所示)在△ABC中,∠ACB=90°,∠A=30°,BC=4,沿斜边AB的中线CD把这个三角形剪成△AC1D1和△BC2D2两个三角形(如图2所示).将△AC1D1沿直线D2B方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,平移停止.设平移距离D1D2为x,△AC1D1和△BC2D2的重叠部分面积为y,在y与x的函数图象大致是( )

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,DE垂直平分BC,垂足为点D,交AB于点E,且AD=AC,EC交AD于点F,下列说法:
①△ABC∽△FDC;②点F是线段AD的中点;③S△AEF:S△AFC=1:4;④若CE平分∠ACD,则∠B=30°,其中正确的结论有_____(填写所有正确结论的序号).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,分别设P,Q,E,F为边AB,BC,AD,CD的中点,设T为线段EF的三等分点,则△PQT与ABCD的面积之比是______.

相关试题