【题目】如图,已知C是AB的中点,D是AC的中点,E是BC的中点.
![]()
(1)若DE=9cm,求AB的长.
(2)若CE=5cm,求DB的长.
参考答案:
【答案】(1)AB=18;(2)DB=15.
【解析】
(1)由线段中点的定义可得CD=
AC,CE=
BC,根据线段的和差关系可得DE=
AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.
(1)∵D是AC的中点,E是BC的中点.
∴CD=
AC,CE=
BC,
∵DE=CD+CE=9,
∴
AC+
BC=
(AC+BC)=9,
∵AC+BC=AB,
∴AB=18.
(2)∵C是AB的中点,D是AC的中点,E是BC的中点,
∴AC=BC,CE=BE=
BC,,AD=CD=
AC,
∴AD=CD=CE=BE,
∴DB=CD+CE+BE=3CE,
∵CE=5,
∴DB=15.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=
的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;(1)求反比例函数的解析式;
(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;
(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围,(不必写过程)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:
(1)求证:△BEF∽△DCB;
(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;
(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;
(4)当t为何值时,△PQF为等腰三角形?试说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在数轴上点O为原点,A点表示数a,B点表示数b,且a、b满足|a+2|+|b-4|=0;

(1)点A表示的数为 ;点B表示的数为 ;
(2)如果M、N为数轴上两个动点.点M从点A出发,速度为每秒1个单位长度;点N从点B出发,速度为点A的3倍,它们同时向左运动.
①当运动2秒时,点M、N对应的数分别是 、 .
②当运动t秒时,点M、N对应的数分别是 、 .(用含t的式子表示)
③运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点C在线段AB上,点M、N分别是AC、BC的中点.

若
,求线段MN的长;
若C为线段AB上任一点,满足
,其它条件不变,你能猜想MN的长度吗?并说明理由,你能用一句简洁的话描述你发现的结论吗?
若C在线段AB的延长线上,且满足
cm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线l上有三点A、B、C,AB=3,AC=2,点M是AC的中点.
(1)根据条件,画出图形;
(2)求线段BM的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣
),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求m的值.

相关试题