【题目】(本题满分8分)如图,四边形ABCD中,
,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.
![]()
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
参考答案:
【答案】(1)见解析;(2)6
或![]()
【解析】
试题(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;
(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.
试题解析:(1)证明:∵∠A=∠ABC=90°
∴AF∥BC
∴∠CBE=∠DFE,∠BCE=∠FDE
∵E是边CD的中点
∴CE=DE
∴△BCE≌△FDE(AAS)
∴BE=EF
∴四边形BDFC是平行四边形
(2)若△BCD是等腰三角形
①若BD=DC
在Rt△ABD中,AB=![]()
∴四边形BDFC的面积为S=
×3=6
;
②若BD=DC
过D作BC的垂线,则垂足为BC得中点,不可能;
③若BC=DC
过D作DG⊥BC,垂足为G
在Rt△CDG中,DG=![]()
∴四边形BDFC的面积为S=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】按要求解下列方程.
(1)(x﹣3)2=16
(2)x2﹣4x=5(配方法)
(3)x2﹣4x﹣5=0(公式法)
(4)x2﹣5x=0(因式分解法) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知x1 , x2是方程x2﹣2x﹣1=0的两根,试求下列代数式的值.
(1)(x1+x2)(x1x2);
(2)(x1﹣x2)2 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,左面的几何体叫三棱柱,它有五个面,
条棱,
个顶点,中间和右边的几何体分别是四棱柱和五棱柱.
四棱柱有________个顶点,________条棱,________个面;
五棱柱有________个顶点,________条棱,________个面;
你能由此猜出,六棱柱、七棱柱各有几个顶点,几条棱,几个面吗?
棱柱有几个顶点,几条棱,几个面吗? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠B=90°,BC=
,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】学校、文具店、书店依次坐落在一条南北走向的大街上,学校在文具店的南边20 m处,书店在文具店的北边100 m处,张明同学从文具店出发,向北走了50 m,接着又向北走了-70 m,此时张明的位置在( )
A. 文具店 B. 学校 C. 书店 D. 以上都不对
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.

(2)结论应用:① 如图2,点M,N在反比例函数
(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF. ② 若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断 MN与EF是否平行?请说明理由.
相关试题