【题目】在平面直角坐标系中,A点坐标是(0,6),M点坐标是(8,0).P是射线AM上一点,PB⊥x轴,垂足为B.设AP=a.
(1)AM= ;
(2)如图,以AP为直径作圆,圆心为点C.若⊙C与x轴相切,求a的值;
(3)D是x轴上一点,连接AD、PD.若△OAD∽△BDP,试探究满足条件的点D的个数(直接写出点D的个数及相应a的取值范围,不必说明理由).
![]()
参考答案:
【答案】(1)10;(2)a=
;(3)见解析.
【解析】试题分析:(1)由点的坐标可得OA=6,OB=8,根据勾股定理即可求出AM的值.
(2)设切点为E.连接CE,易得Rt△CEM∽Rt△AOM,则
,代入求得a的值.
(3)结合图形,分三种情况探究满足条件的点D的个数.
试题解析:
解:(1)10;
(2)由题意知⊙C与x轴相切,
设切点为E.连接CE,则CE⊥x轴,且CE=
a易证Rt△CEM∽Rt△AOM,
所以
,即
,
解得a=
;
![]()
(3)①当0<a<
时,满足条件的D点有2个;
②当a=
时,满足条件的D点有3个;
③当a>
且a≠10时,满足条件的D点有4个.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知l1∥l2,线段MA分别与直线l1,l2交于点A,B,线段MC分别与直线l1,l2交于点C,D,点P在线段AM上运动(P点与A,B,M三点不重合),设∠PDB=α,∠PCA=β,∠CPD=γ.
(1)若点P在A,B两点之间运动时,若a=25°,β=40°,那么γ= .
(2)若点P在A,B两点之间运动时,探究α,β,γ之间的数量关系,请说明理由;
(3)若点P在B,M两点之间运动时,α,β,γ之间有何数量关系?(只需直接写出结论)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A(a,0)和B(0,b)满足(a﹣4)2+|b﹣6|=0,分别过点A,B作x轴.y轴的垂线交于点C,如图所示.点P从原点出发,以每秒1个单位长度的速度沿着O→B→C→A的路线移动,运动时间为t秒.
(1)写出A,B,C三点的坐标:A ,B ,C ;
(2)当t=14秒时,求△OAP的面积.
(3)点P在运动过程中,当△OAP的面积为6时,求t的值及点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线
经过A(﹣1,0)、B(3,0)两点.(1)求抛物线的解析式和顶点坐标;
(2)当0<x<3时,求y的取值范围;
(3)点P为抛物线上一点,若
,求出此时点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).
(1)当t=0.5时,求线段QM的长;
(2)当M在AB上运动时,是否可以使得以C、P、Q为顶点的三角形为直角三角形?若可以,请求t的值;若不可以,请说明理由.
(3)当t>2时,连接PQ交线段AC于点R.请探究
是否为定值,若是,试求这个定值;若不是,请说明理由.


-
科目: 来源: 题型:
查看答案和解析>>【题目】小明同学以“你最喜欢的运动项目”为主题,对公园里参加运动的群众进行随机调查(每名被调查者只能选一个项目,且被调查者都进行了选择).下面是小明根据调查结果列出的统计表和绘制的扇形统计图(不完整).
被调查者男、女所选项目人数统计表
项目
男(人数)
女(人数)
广场舞
7
9
健步走

4
器械
2
2
跑步
5


根据以上信息回答下列问题:
(1)统计表中的
__________,
__________.(2)扇形统计图中“广场舞”项目所对应扇形的圆心角度数为__________°.
(3)若平均每天来该公园运动的人数有3600人,请你估计这3600人中最喜欢的运动项目是“跑步”的约有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校七年级为了表彰“数学素养水平测试”中表现优秀的同学,准备用480元钱购进笔记本作为奖品.若
种笔记本买20本,
本笔记本买30本,则钱还缺40元;若
种笔记本买30本,
种笔记本买20本,则钱恰好用完.(1)求
,
两种笔记本的单价.(2)由于实际需要,需要增加购买单价为6元的
种笔记本若干本.若购买
,
,
三种笔记本共60本,钱恰好全部用完.任意两种笔记本之间的数量相差小于15本,则
种笔记本购买了__________本.(直接写出答案)
相关试题