【题目】矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D的坐标为(2,0),E为AB上的点,当△CDE的周长最小时,点E的坐标为( )
![]()
A. (1,3) B. (3,1) C. (4,1) D. (3,2)
参考答案:
【答案】B
【解析】
作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.
作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,如图所示:
![]()
∵D(2,0),A(3,0),
∴H(4,0),
设直线CH解析式为y=ax+b,则:
,解得:
,
所以直线CH解析式为y=-x+4,
∴x=3时,y=-3+4=1,
∴点E坐标(3,1)
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面坐标系中,点
、点
分别在
轴、
轴的正半轴上,且
,另有两点
和
,
、
均大于
;
(1)连接
、
,求证:
;(2)连接
、
、
,若
,
,
,求
的度数;(3)若
,在线段
上有一点
,且
,
,
,求
的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,抛物线y=
﹣
x﹣4与x轴交于点A、B,与y 轴相交于点C.(1)求直线BC的解析式;
(2)将直线BC向上平移后经过点A得到直线l:y=mx+n,点D在直线l上,若以A、B、C、D为顶点的四边形是平行四边形,求出点D的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)
.(2)
.(3)
.(4)
.(5)解方程

(6)解方程组

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,自行车链条每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm.
(1)尝试: 2节链条总长度是________
, 3节链条总长度是________
.(2)发现:用含
的代数式表示
节链条总长度是________. ( 要求填写最简结果)(3)应用:如果某种型号自行车链条总长度为
,则它是由多少节这样的链条构成的?
-
科目: 来源: 题型:
查看答案和解析>>【题目】【问题背景】
如图①所示,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形.
【类比研究】
如图②所示,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合).
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;
(2)△DEF是否为正三角形?请说明理由;
(3)连结AE,若AF=DF,AB=7,求△DEF的边长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:点
在同一条直线上,点
为线段
的中点,点
为线段
的中点.(1)如图1 ,当点
在线段
上时.①若
,则线段
的长为_______.②若点
为线段
上任意一点,
,则线段
的长为_______. ( 用含
的代数式表示)
(2)如图2 ,当点
不在线段
上时,若
,求
的长(用含
的代数式表示) .
(3)如图,已知
,作射线
,若射线
平分
,射线
平分
.①当射线
在
的内部时,则
=________°.②当射线
在
的外部时,则
=_______°. ( 用含
的代数式表示) .
相关试题