【题目】如图,在平面直角坐标系中,抛物线y=ax2+4x+c与y轴交于点A(0,5),与x轴交于点E,B,点B坐标为(5,0).
(1)求二次函数解析式及顶点坐标;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积.
![]()
参考答案:
【答案】(1)y=﹣x2+4x+5,顶点坐标为(2,9);(2)当P(
,
)时,S有最大值为
.
【解析】试题分析:(1)用待定系数法求抛物线解析式,并利用配方法求顶点坐标;
(2)先求出直线AB解析式,设出点P坐标(x,-x2+4x+5),建立函数关系式S四边形APCD=-2x2+10x,根据二次函数求出极值;可得P的坐标.
试题解析:(1)把点A(0,5),点B坐标为(5,0)代入抛物线y=ax2+4x+c中,
得:
,解得:
,
∴抛物线的解析式为:y=-x2+4x+5=-(x-2)2+9,
∴顶点坐标为(2,9);
(2)设直线AB的解析式为:y=mx+n,
∵A(0,5),B(5,0),
∴
,
解得:
,
∴直线AB的解析式为:y=-x+5,
设P(x,-x2+4x+5),则D(x,-x+5),
∴PD=(-x2+4x+5)-(-x+5)=-x2+5x,
∵点C在抛物线上,且纵坐标为5,
∴C(4,5),
∴AC=4,
∴S四边形APCD=
ACPD=
×4(-x2+5x)=-2x2+10x=-2(x-
)2+
,
∵-2<0,
∴S有最大值,
∴当x=
时,S有最大值为
,
此时P(
,
).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A的度数是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,求AA′的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.

(1)如图1,△ABC的两内角∠ABC与∠ACB的平分线交于点E,求证:∠BEC=90°+
∠A;(2)如图2,△ABC的内角∠ABC的平分线与△ABC的外角∠ACM的平分线交于点E,请写出∠E与∠A的数量关系,并证明.
(3)如图3,△ABC的两外角∠DBC与∠BCF的平分线交于点E,请你直接写出∠E与∠A的数量关系,不需证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣12n+36+|n﹣2m|=0.

(1)求A、B两点的坐标;
(2)若点D为AB中点,延长DE交x轴于点F,在ED的延长线上取点G,使DG=DF,连接BG.
①BG与y轴的位置关系怎样?说明理由; ②求OF的长;
(3)如图2,若点F的坐标为(10,10),E是y轴的正半轴上一动点,P是直线AB上一点,且P的横坐标为6,是否存在点E使△EFP为等腰直角三角形?若存在,求出点E的坐标;若不存在,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知线段a和∠EAF,点B在射线AE上 . 画出△ABC,使点C在射线AF上,且BC=a.
(1)依题意将图补充完整;
(2)如果∠A=45°,AB=
,BC=5,求△ABC的面积 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】“四书五经”是中国的“圣经”,“四书五经”是《大学》、《中庸》、《论语》和《孟子》(四书)及《诗经》、《尚书》、《易经》、《礼记》、《春秋》(五经)的总称,这是一部被中国人读了几千年的教科书,包含了中国古代的政治理想和治国之道,是我们了解中国古代社会的一把钥匙 . 某学校计划分阶段引导学生读这些书,先购买《论语》和《孟子》供学生阅读 . 已知用500元购买《孟子》的数量和用800元购买《论语》的数量相同,《孟子》的单价比《论语》的单价少15元 . 求《论语》和《孟子》这两种书的单价各是多少元?

相关试题