【题目】某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长37米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?如图是两位学生争议的情境:请根据上面的信息,解决问题: ![]()
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?
参考答案:
【答案】
(1)解:设AB=x米,可得:BC=37+3﹣2x=40﹣2x
(2)解:小英说法正确;
矩形面积S=x(40﹣2x)=﹣2(x﹣10)2+200,
∴当x=10时,S取最大值,
此时x≠40﹣2x,∴面积最大的不是正方形
【解析】(1)设AB=x米,根据等式x+x+BC=37+3,可以求出BC的表达式;(2)得出面积关系式,根据所求关系式进行判断即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
中,
,D,E,F分别为AB,BC,CA上的点,且
,
.(1)求证:
≌
;(2)若
,求
的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点M为直线AB上一动点,
都是等边三角形,连接BN
求证:
;
分别写出点M在如图2和图3所示位置时,线段AB、BM、BN三者之间的数量关系
不需证明
;
如图4,当
时,证明:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.

(1)求∠D的度数;
(2)求证:AC2=ADCE. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形网格中的每个小正方形边长都是1.请同学们利用网格线进行画图:
(1)在图1中,画一个顶点为格点、面积为5的正方形;
(2)在图2中,已知线段AB、CD,画线段EF,使它与AB、CD组成轴对称图形;(要求画出所有符合题意的线段)
(3)在图3中,找一格点D,满足:①到CB、CA的距离相等;②到点A、C的距离相等.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点F,G分别在△ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.

(1)求证:BC=DE;
(2)若∠B=35°,∠AFB=78°,直接写出∠DGB的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:
如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A,E,C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m)
相关试题