【题目】在学习一元一次方程的解法时,我们经常遇到这样的试题:
“解方程:
”,请根据解题过程,在后面的括号内写出变形依据.
解:去分母,得 ( )
去括号,得 ( )
移项,得 ( )
合并,得 (合并同类项法则)
系数化为 1,得 ( )
请你写出在进行运算时容易出错的地方(至少写出三个).
参考答案:
【答案】答案见解析
【解析】
(1)方程去分母,去括号,移项合并,把x系数化为1,求出解;
(2)提出三条运算时容易出错的地方即可.
(1)去分母,得:15x﹣3(x﹣2)=5(2x﹣5)﹣45(等式的性质)
去括号,得:15x﹣3x+6=10x﹣25﹣45(去括号法则)
移项,得:15x﹣3x﹣10x=﹣25﹣45﹣6(等式的性质)
合并,得:2x=﹣76(合并同类项)
系数化为1,得:x=﹣38(等式的性质);
(2)去分母时各项都要乘以15;去括号时,括号外边是负号时注意变号;移项时注意要变号.
故答案为:(1)15x﹣3(x﹣2)=5(2x﹣5)﹣45;等式的性质;15x﹣3x+6=10x﹣25﹣45;去括号法则;15x﹣3x﹣10x=﹣25﹣45﹣6;等式的性质;2x=﹣76;x=﹣38;等式的性质.
-
科目: 来源: 题型:
查看答案和解析>>【题目】仔细观察下面由“※”组成的图案和算式,解答问题:

1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
(1)请计算:
1+3+5+7+9+ … +19= ;
(2)请猜想:
1+3+5+7+9+ … +(2n-1)+(2n+1)+(2n+3)= ;
(3)请用上述规律计算:
103+105+107+ … +2013+2015
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在数轴上点A、B、C表示的数分别为﹣2、1、6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC

(1)请直接写出AB、BC、AC的长度;
(2)若点D从A点出发,以每秒1个单位长度的速度向左运动,点E从B点出发以每秒2个单位长度的速度向右运动,点F从C点出发以每秒5个单位长度的速度向右运动.设点D、E、F同时出发,运动时间为t秒,试探索:EF﹣DE的值是否随着时间t的变化而变化?请说明理由.
(3)若点M以每秒4个单位的速度从A点出发,点N以每秒3个单位的速度运动从C点出发,设点M、N同时出发,运动时间为t秒,试探究:经过多少秒后,点M、N两点间的距离为14个单位.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,∠BAC=36°,将△ABC绕点A按逆时针旋转角度ɑ(0°<ɑ<180°)得到△ADE,连接CE、BD,BD与CE相交于点F。
(1)求证:BD=CE
(2)当ɑ等于多少度时,四边形AFDE是平行四边形?并说明理由。


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中∠C=90°,点O是AB边上一点,以OA为半径作⊙O,与边AC交于点D,连接BD,若∠DBC=∠A,求证:BD是⊙O的切线.

-
科目: 来源: 题型:
查看答案和解析>>【题目】现有一“过关游戏”,规定:在第n关要掷一颗骰子n次,如果这n次抛掷所出现的点数之和大于
,则算过关,否则不算过关.
(1)过第1关是事件(填“必然”、“不可能”或“不确定”,后同),过第4关是事件;
(2)当n=2时,计算过过第二关的概率(可借助表格或树状图). -
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题满分12分)
直线y=
x+6和x轴,y轴分别交于点E,F,点A是线段EF上一动点(不与点E重合),过点A作x轴垂线,垂足是点B,以AB为边向右作长方形ABCD,AB:BC=3:4.(1)当点A与点F重合时(图1),求证:四边形ADBE是平行四边形,并求直线DE的表达式;
(2)当点A不与点F重合时(图2),四边形ADBE仍然是平行四边形?说明理由,此时你还能求出直线DE的表达式吗?若能,请你出来.

相关试题