【题目】如图,AD∥BC,BC=2AD,E为BC的中点,R为DC的中点,BR交AE于点P,则EP:AP= .
![]()
参考答案:
【答案】
.
【解析】
试题分析:先由BC=2AD,BE=EC=
BC,得出BE=EC=AD,根据AD∥BC,由一组对边平行且相等的四边形是平行四边形可得四边形ADCE是平行四边形,那么EA=CD,EA∥CD.得出△BEP∽△BCR,于是EP=
CR,而CR=
CD,那么EP=
CD=
EA,然后根据比例的性质即可求出答案即可.
解:∵BC=2AD,BE=EC=
BC,
∴BE=EC=AD,
∵在等腰梯形ABCD中,AD∥BC,
∴四边形ADCE是平行四边形,
∴EA=CD,EA∥CD,
∴△BEP∽△BCR,
∵BE=EC=
BC,
∴EP=
CR,
∵CR=
CD,
∴EP=
CD=
EA,
∴
=
,
∴EP:AP=
.
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】【观察发现】
如图1,四边形ABCD和四边形AEFG都是正方形,且点E在边AB上,连接DE和BG,猜想线段DE与BG的数量关系,以及直线DE与直线BG的位置关系.(只要求写出结论,不必说出理由)

【深入探究】
如图2,将图1中正方形AEFG绕点A逆时针旋转一定的角度,其他条件与观察发现中的条件相同,观察发现中的结论是否还成立?请根据图2加以说明.
【拓展应用】
如图3,直线l上有两个动点A、B,直线l外有一点O,连接OA,OB,OA,OB长分别为
、4,以线段AB为边在l的另一侧作正方形ABCD,连接OD.随着动点A、B的移动,线段OD的长也会发生变化,在变化过程中,线段OD的长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正六边形ABCDEF内接于⊙O,向⊙O内任意投点,则所投的点落在正六边形ABCDEF内的概率是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形ABC内接于圆O,AB=AC,AB的垂直平分线MN与边AB交于点M,与AC所在的直线交于点N,若∠ANM=70°,则劣弧
所对的圆心角的度数为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,O为原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,连结CD,某抛物线y=ax2+bx+c(a≠0)经过点D、点E(1,1).

(1)若该抛物线过原点O,则a= ;
(2)若点Q在抛物线上,且满足∠QOB与∠BCD互余,要使得符合条件的Q点的个数是4个,则a的取值范围是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一个多边形的内角和为540°,则这个多边形的边数为( )
A. 3 B. 4 C. 5 D. 6
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图1,二次函数y=ax2﹣2ax+c(a>0)的图象与y轴交于点C(0,﹣4),与x轴交于点A、B两点,点A的坐标为(4,0).

(1)求该抛物线的函数解析式;
(2)点P(t,0)是线段OB上一动点(不与O、B重合),点E是线段BC上的点,以点B、P、E为顶点的三角形与三角形ABC相似,连结CP,求△CPE的面积S与t的函数关系式;
(3)如图2,若平行于x轴的动直线与该抛物线交于点Q,与直线AC交于点F,点D的坐标为(2,0),则存在这样的直线,使得△ODF为等腰三角形,请直接写出点Q坐标.
相关试题