【题目】如图,已知AB∥CD,∠1=∠2,CF平分∠DCE.
![]()
(1)试判断直线AE与BF有怎样的位置关系,并说明理由;
(2)若∠1=80°,求∠3的度数.
参考答案:
【答案】1)AC∥BD,理由见解析;(2)50°
【解析】
(1)先根据AB∥CD得出∠2=∠CDF,再由∠1=∠2即可得出结论;
(2)先求出∠ECD的度数,再由角平分线的性质求出∠ECF的度数,根据平行线的性质即可得出结论.
解:(1)AC∥BD.
理由:∵AB∥CD,
∴∠2=∠CDF.
∵∠1=∠2,
∴∠1=∠CDF,
∴AC∥BD;
(2)∵∠1=80°,
∴∠ECD=180°-∠1=180°-80°=100°.
∵CF平分∠ECD,
∴∠ECF=
∠ECD=50°.
∵AC∥BD,
∴∠3=∠ECF=50°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A、B两种型号的空气净化器,两种净化器的销售相关信息见下表:
A型销售数量(台)
B型销售数量(台)
总利润(元)
5
10
2000
10
5
2500
(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?
(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;
(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时,某长方体室内活动场地的总面积为200m2 , 室内墙高3m,该场地负责人计划购买5台空气净化器每天花费30分钟将室内就欧诺个气净化一新,若不考虑空气对流等因素,至少要购买A型空气净化器多少台? -
科目: 来源: 题型:
查看答案和解析>>【题目】某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.
(1)当x≥30,求y与x之间的函数关系式;
(2)若小李4月份上网20小时,他应付多少元的上网费用?
(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,
的
所对边分别是
,且
,若满足
,则称
为奇异三角形,例如等边三角形就是奇异三角形.(1)若
,判断
是否为奇异三角形,并说明理由;(2)若
,
,求
的长;(3)如图2,在奇异三角形
中,
,点
是
边上的中点,连结
,
将
分割成2个三角形,其中
是奇异三角形,
是以
为底的等腰三角形,求
的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题发现:如图1,在△ABC中,∠C=90°,分别以AC、BC为边向外侧作正方形ACDE和正方形BCFG.

(1)△ABC与△DCF面积的关系是;(请在横线上填写“相等”或“不相等”)
(2)拓展探究:若∠C≠90°,(1)中的结论还成立吗?若成立,请结合图2给出证明;若不成立,请说明理由;
(3)解决问题:如图3,在四边形ABCD中,AC⊥BD,且AC与BD的和为10,分别以四边形ABCD的四条边为边向外侧作正方形ABFE、正方形BCHG、正方形CDJI、正方形DALK,运用(2)的结论,图中阴影部分的面积和是否有最大值?如果有,请求出最大值,如果没有,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,
,
,过点
画
轴的垂线
,点
在线段
上,连结
并延长交直线
于点
,过点
画
交直线
于点
.(1)求
的度数,并直接写出直线
的解析式;(2)若点
的横坐标为2,求
的长;(3)当
时,求点
的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将下面的解答过程补充完整:如图,点
在
上,点
在
上,
,
.试说明:
∥
.
解:∵
(已知)
( )∴
(等量代换)∴ ______∥_______( )
∴
( )∵
(已知)∴
( )∴
∥
( )
相关试题