【题目】如图所示,某小区要用篱笆围成一矩形花坛,花坛的一边用足够长的墙,另外三边所用的篱笆之和恰好为
米.![]()
(1)求矩形
的面积(用
表示,单位:平方米)与边
(用
表示,单位:米)之间的函数关系式(不要求写出自变量
的取值范围);怎样围,可使花坛面积最大?
(2)如何围,可使此矩形花坛面积是
平方米?
参考答案:
【答案】
(1)解:AB=x,则BC=16-2x,
根据矩形的面积公式可得:S=x(16-2x)=-2x2+16x=-2(x-4)2+32.
当x=4时,S有最大值.
即AB=CD=4米,BC=8米时,花坛的面积最大
(2)解:将S=30代入S=-2x2+16x,解得x=3或x=5,
答:AB=CD=3米,BC=10米或AB=CD=5米,BC=6米时花坛面积是30平方米
【解析】根据知识的面积公式列出二次函数的解析式,再根据二次函数的性质进行求解即可。
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:

(1)小亮遇到这样问题:如图1,已知AB∥CD,EOF是直线AB、CD间的一条折线.判断∠O、∠BEO、∠DFO三个角之间的数量关系.小亮通过思考发现:过点O作OP∥AB,通过构造内错角,可使问题得到解决.
请回答:∠O、∠BEO、∠DFO三个角之间的数量关系是 .
参考小亮思考问题的方法,解决问题:
(2)如图2,将△ABC沿BA方向平移到△DEF(B、D、E共线),∠B=50°,AC与DF相交于点G,GP、EP分别平分∠CGF、∠DEF相交于点P,求∠P的度数;
(3)如图3,直线m∥n,点B、F在直线m上,点E、C在直线n上,连接FE并延长至点A,连接BA、BC和CA,做∠CBF和∠CEF的平分线交于点M,若∠ADC=α,则∠M= (直接用含α的式子表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A(2,0),D(6,4),将线段AD平移得到BC,B(0,﹣6),延长BC交x轴于点E.
(1)则△ABC的面积是 ;
(2)Q为x轴上一动点,当△ABC与△ADQ的面积相等时,试求点Q的坐标.
(3)若存在一点M(m,6)且△ADM的面积不小于△ABC的面积,求m的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.
(1)求签字笔和笔记本的单价分别是多少元?
(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类且定价为15元的图书.书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠,学校如果多买12本,则可以享受优惠且所花钱数与原来相同,问学校获奖的同学有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:EF∥AD,∠1=∠2,∠BAC=75°.将求∠AGD的过程填写完整.
解:∵EF∥AD (已知)∴∠2= ( )
又∵∠1=∠2 (已知)∴∠1=∠3( )
∴AB∥ ( )
∴∠BAC+ =180°( )
∵∠BAC=75°(已知)
∴∠AGD= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,∠A∶∠ABC∶∠ACB=3∶4∶5,BD,CE分别是边AC,AB上的高,BD,CE相交于H,求∠BHC的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中,真命题有( )
①同旁内角互补;②互补的角是邻补角;③平方根、立方根是它本身的数是0和1;④
和﹣|﹣2|互为相反数;⑤4<
<5;⑥如果a∥b,a⊥c.那么b⊥c.A. 0个B. 1个C. 2个D. 3个
相关试题