【题目】我们做个折纸游戏:第一步:在一张矩形纸片的一端,利用图
的方法折出一个正方形,然后把纸片展开;第二步:如图
,把这个正方形折成两个相等的矩形,再把纸片展开;第三步:折出内侧矩形的对角线
,并把它折到图
中所示的
处;第四步:如图
, 展平纸片,按照所得的
点折出
.则矩形
的宽
与长
的比是__________.
![]()
参考答案:
【答案】![]()
【解析】
设正方形的边长为2a,由折叠的性质,可得AC=正方形的边长×
=a,在Rt△ABC中,利用勾股定理可求出AB与正方形的边长之间的关系,再求出CD=
aa,即可求解.
在正方形BCNM中,令NC=2a,∴BC=NC=2a,
∵A为NC的中点,
∴AC=
NC=a.
在Rt△ABC中,AB=
=
a.
又∵AD=AB,
∴CD=ADAC=(
1)a.
∴矩形BCDE的宽CD与长BC的比=![]()
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】【知识链接】 有理化因式:两个含有根式的非零代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.
例如:
的有理化因式是
;1﹣
的有理化因式是1+
.
分母有理化:分母有理化又称“有理化分母”,也就是把分母中的根号化去.指的是如果代数式中分母有根号,那么通常将分子、分母同乘以分母的有理化因式,达到化去分母中根号的目的.如:
=
=
﹣1,
=
=
﹣
.
(1)【知识理解】 填空:2
的有理化因式是;
直接写出下列各式分母有理化的结果:
①
=;②
= .
(2)【启发运用】 计算:
+
+
+…+
. -
科目: 来源: 题型:
查看答案和解析>>【题目】完成下列证明:如图,已知AD⊥BC,EF⊥BC,∠1=∠2.

求证:DG∥BA.
证明:∵AD⊥BC,EF⊥BC(已知)
∴∠EFB=90°,∠ADB=90°(______)
∴∠EFB=∠ADB(等量代换)
∴EF∥AD(______)
∴∠1=∠BAD(______)
又∵∠1=∠2(已知)
∴∠______=∠______(等量代换)
∴DG∥BA.(______).
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解题: 学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如3+2
=(1+
)2 , 我们来进行以下的探索:
设a+b
=(m+n
)2(其中a,b,m,n都是正整数),则有a+b
=m2+2n2+2mn
,∴a=m+2n2 , b=2mn
, 这样就得出了把类似a+b
的式子化为平方式的方法.
请仿照上述方法探索并解决下列问题:
(1)当a,b,m,n都为正整数时,若a﹣b
=(m﹣n
)2 , 用含m,n的式子分别表示a,b,得a= , b=;
(2)利用上述方法,找一组正整数a,b,m,n填空:﹣
=(﹣
)2
(3)a﹣4
=(m﹣n
)2且a,m,n都为正整数,求a的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为( )

A.50°
B.60°
C.80°
D.90° -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.

(1)求证:△ADE≌△CBF;
(2)若四边形 BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
相关试题