【题目】如∠MON=30°、OP=6,点A、B分别在OM、ON上;(1)请在图中画出周长最小的△PAB(保留画图痕迹);(2)请求出(1)中△PAB的周长.
![]()
参考答案:
【答案】(1)见解析; (2) 6.
【解析】
(1)设点P关于OM、ON对称点分别为P′、P″,当点A、B在P′P″上时,△PAB周长为PA+AB+BP=P′P″,此时周长最小.(2)根据轴对称的性质,可得△OP′P″是等边三角形即可解决问题.
(1)如图所示:
分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A.B,![]()
连接PA、PB,此时△PAB周长的最小值等于P′P″.
(2)如图所示:由轴对称性质可得,
OP′=OP″=OP=6cm,∠P′OA=∠POA,∠P″OB=∠POB,
所以∠P′OP″=2∠MON=2×30°=60°,
因为OP′=OP″,所以△OP″P′是等边三角形,
∴P′P″=6cm,
∴△APB的周长最小值为6cm,
故答案为6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,△ABD和△ACE分别是以AB、AC为斜边的等腰直角三角形,BE、CD相交于点F.求证:AF⊥BC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】有下列命题:①两条直线被第三条直线所截,同位角相等;②0.1的算术平方根是0.01;③算术平方根等于它本身的数是1;④如果点P(3-2n,1)到两坐标轴的距离相等,则n=1;⑤若a2=b2,则a=b;⑥若
=
,则a=b.其中假命题的个数是( )A. 3个B. 4个C. 5个D. 6个
-
科目: 来源: 题型:
查看答案和解析>>【题目】“倡导全民阅读”、“推动国民素质和社会文明程度显著提高”已成为“十三五”时期的重要工作.教育主管部门对某学校青年学校青年教师2016年度阅读情况进行了问卷调查,并将收集的数据统计如表,根据表中的信息判断,下列结论错误的是( )

A. 该学校中参与调查的青年教师人数为40人
B. 该学校中青年教师2016年平均每人阅读8本书
C. 该学校中青年教师2016年度看书数量的中位数为4本
D. 该学校中青年教师2016年度看书数量的众数为4本
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知线段AC为⊙O的直径,PA为⊙O的切线,切点为A,B为⊙O上一点,且BC∥PO.

(1)求证:PB为⊙O的切线;
(2)若⊙O的半径为1,PA=3,求BC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,她在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如图所示.

(1)试估计该小区5月份用水量不高于12 t的户数占小区总户数的百分比;
(2)把图中每组用水量的值用该组的中间值(如0~6的中间值为3)来替代,估计该小区5月份的用水量.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在平面直角坐标系中,二次函数y=﹣
x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.
(1)填空:b= , c=;
(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;
(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;
(4)如图②,点N的坐标为(﹣
,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.
相关试题