【题目】如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)![]()
(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.
参考答案:
【答案】
(1)
解:把B、C两点坐标代入抛物线解析式可得
,解得
,
∴抛物线解析式为y=x2﹣2x﹣3
(2)
解:如图1,连接BC,过P作y轴的平行线,交BC于点M,交x轴于点H,
![]()
在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,
∴A点坐标为(﹣1,0),
∴AB=3﹣(﹣1)=4,且OC=3,
∴S△ABC=
ABOC=
×4×3=6,
∵B(3,0),C(0,﹣3),
∴直线BC解析式为y=x﹣3,
设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),
∵P点在第四限,
∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,
∴S△PBC=
PMOH+
PMHB=
PM(OH+HB)=
PMOB=
PM,
∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,
∵PM=﹣x2+3x=﹣(x﹣
)2+
,
∴当x=
时,PMmax=
,则S△PBC=
×
=
,
此时P点坐标为(
,﹣
),S四边形ABPC=S△ABC+S△PBC=6+
=
,
即当P点坐标为(
,﹣
),四边形ABPC的面积最大,最大面积为 ![]()
(3)
解:①当点Q在x轴下方时,如图2,设直线m交y轴于点N,交直线l于点G,
![]()
则∠AGB=∠GNC+∠GCN,
当△AGB和△NGC相似时,必有∠AGB=∠CGB,
又∠AGB+∠CGB=180°,
∴∠AGB=∠CGB=90°,
∴∠ACO=∠OBN,
在Rt△AOC和Rt△NOB中
![]()
∴Rt△AOC≌Rt△NOB(ASA),
∴ON=OA=1,
∴N点坐标为(0,﹣1),
设直线m解析式为y=kx+d,把B、N两点坐标代入可得
,解得
,
∴直线m解析式为y=
x﹣1;
②当点Q在x轴上方时,此时直线m与①中的直线m关于x轴对称,
∴解析式为y=﹣
x+1;
综上可知存在满足条件的直线m,其解析式为y=
x﹣1或y=﹣
x+1
【解析】(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;(2)连接BC,则△ABC的面积是不变的,过P作PM∥y轴,交BC于点M,设出P点坐标,可表示出PM的长,可知当PM取最大值时△PBC的面积最大,利用二次函数的性质可求得P点的坐标及四边形ABPC的最大面积;(3)设直线m与y轴交于点N,交直线l于点G,由于∠AGP=∠GNC+∠GCN,所以当△AGB和△NGC相似时,必有∠AGB=∠CGB=90°,则可证得△AOC≌△NOB,可求得ON的长,可求出N点坐标,利用B、N两的点坐标可求得直线m的解析式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为S.

(1)求S与x之间的函数表达式;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知反比例函数y1=
的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2). 
(1)求这两个函数的表达式;
(2)观察图象,直接写出y1>y2时自变量x的取值范围.
(3)连接OA、OB,求△AOB的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中AB=12cm,BC=6cm,点P沿AB边从点A开始以2cm/秒的速度移动,点Q沿DA边从D以1cm/秒的速度移动,若P、Q同时出发,用t表示移动时间(0≤t≤6),求当t何值时,△APQ与△ABC相似?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,A点坐标为(3,4),将线段OA绕原点O逆时针旋转90°得到线段OA′,则点A′的坐标是( )
A.(﹣4,3)
B.(﹣3,4)
C.(3,﹣4)
D.(4,﹣3) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为( )

A.
B.
C.1﹣
D.1﹣
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图为二次函数y=ax2+bx+c的图象,在下列说法中: ①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④当x>1时,y随着x的增大而增大.
正确的说法有 . (请写出所有正确的序号)
相关试题