【题目】在平面直角坐标系中,A点坐标为(3,4),将线段OA绕原点O逆时针旋转90°得到线段OA′,则点A′的坐标是( )
A.(﹣4,3)
B.(﹣3,4)
C.(3,﹣4)
D.(4,﹣3)
参考答案:
【答案】A
【解析】解:如图,过点A作AB⊥x轴于B,过点A′作A′B′⊥x轴于B′,![]()
∵OA绕坐标原点O逆时针旋转90°至OA′,
∴OA=OA′,∠AOA′=90°,
∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,
∴∠OAB=∠A′OB′,
在△AOB和△OA′B′中,
,
∴△AOB≌△OA′B′(AAS),
∴OB′=AB=4,A′B′=OB=3,
∴点A′的坐标为(﹣4,3).
故选:A.
【考点精析】解答此题的关键在于理解旋转的性质的相关知识,掌握①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知反比例函数y1=
的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2). 
(1)求这两个函数的表达式;
(2)观察图象,直接写出y1>y2时自变量x的取值范围.
(3)连接OA、OB,求△AOB的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中AB=12cm,BC=6cm,点P沿AB边从点A开始以2cm/秒的速度移动,点Q沿DA边从D以1cm/秒的速度移动,若P、Q同时出发,用t表示移动时间(0≤t≤6),求当t何值时,△APQ与△ABC相似?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)

(1)求抛物线的解析式;
(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.
(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为( )

A.
B.
C.1﹣
D.1﹣
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图为二次函数y=ax2+bx+c的图象,在下列说法中: ①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④当x>1时,y随着x的增大而增大.
正确的说法有 . (请写出所有正确的序号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,每个小方格都是边长为1个单位长度的小正方形.

(1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1 .
(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2C2 .
(3)画出一条直线将△AC1A2的面积分成相等的两部分.
相关试题