【题目】如图所示,抛物线y=ax2+bx(a<0)的图象与x轴交于A、O两点,顶点为B,将该抛物线的图象绕原点O旋转180°后,与x轴交于点C,顶点为D,若此时四边形ABCD恰好为矩形,则b的值为 . ![]()
参考答案:
【答案】﹣2 ![]()
【解析】解:如图,连接AB、OB.过点B作BE⊥x轴于点E. 要使平行四边形ABCD是矩形,必须满足AC=BD,
∴OA=OB.
∵点B是抛物线的顶点,
∴AB=OB,
∴△ABO是等边三角形,
∠BAE=60°,AE=
OA.
∵y=ax2+bx=ax(x+
)=0,y=ax2+bx=a(x+
)2﹣
∴A(﹣
,0),B(﹣
,﹣
),
∴tan60°=
=
=
.
解得 b=﹣2
.
故答案是:﹣2
.![]()
【考点精析】认真审题,首先需要了解二次函数图象的平移(平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减).
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察以下等式:
第1个等式:
+
+
×
=1,第2个等式:
+
+
×
=1,第3个等式:
+
+
×
=1,第4个等式:
+
+
×
=1,第5个等式:
+
+
×
=1,……
按照以上规律,解决下列问题:
(1)写出第6个等式:_____;
(2)写出你猜想的第n个等式:_____(用含n的等式表示),并证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若我们规定三角“
”表示为:abc;方框“
”表示为:(xm+yn).例如:
=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:
= ______ ;(2)代数式
为完全平方式,则k= ______ ;(3)解方程:
=6x2+7. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=
,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2 . 上述说法正确的是( ) 
A.①②④
B.③④
C.①③④
D.①② -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,∠BAC=90°,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD′.
(1)当∠DAE=45°时,求证:DE=D′E;
(2)在(1)得条件下,猜想:BD2、DE2、CE2有怎样的数量关系?请写出,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.

我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.
请你在图2中用三种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根:
(2)若x1 , x2是原方程的两根,且|x1﹣x2|=2
,求m的值,并求出此时方程的两根.
相关试题