【题目】已知直线
经过点
,且与
交于点
,在
轴上存在一点
使得
的值最小,则点
的坐标为_______.
参考答案:
【答案】![]()
【解析】
先作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,根据待定系数法求得直线为y=-x-2,进而得到点B的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P的坐标.
如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,
![]()
把A(2,-4)代入y=-x+b可得,b=-2,
∴直线为y=-x-2,
令x=0,则y=-2,即B(0,-2)
∴B'(0,2)
设直线AB'的解析式为y=kx+n,
把A(2,-4),B'(0,2)代入可得,![]()
解得![]()
∴直线AB'的解析式为y=-3x+2,
令y=0,则x=![]()
∴P(
,0)
故答案为:(
,0)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:
①抛物线过原点;
②4a+b+c=0;
③a﹣b+c<0;
④抛物线的顶点坐标为(2,b);
⑤当x<2时,y随x增大而增大.
其中结论正确的是( )
A.①②③
B.③④⑤
C.①②④
D.①④⑤ -
科目: 来源: 题型:
查看答案和解析>>【题目】若x1 , x2(x1<x2)是方程(x﹣a)(x﹣b)=﹣1(a<b)的两根,则实数x1 , x2 , a,b的大小关系是( )
A.a<x1<x2<b
B.x1<a<x2<b
C.x1<a<b<x2
D.x1<x2<a<b -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABC中,BD⊥AC于点D.

(1)若∠C=∠ABC=2∠A,则∠DBC= °;
(2)若∠A=2∠CBD,求证:∠ACB=∠ABC;
(3)如图2,在(2)的条件下,E是AD上一点,F是AB延长线上一点,连接BE、CF,使∠BEC=∠CFB,∠BCF=2∠ABE,求∠EBC的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校学生会向全校
名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为 人,图
中
的值是 .(2)补全图2的统计图.
(3)求本次调查获取的样本数据的平均数、众数和中位数;
(4)根据样本数据,估计该校本次活动捐款金额为
元的学生人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图示二次函数y=ax2+bx+c的对称轴在y轴的右侧,其图象与x轴交于点A(﹣1,0)与点C(x2 , 0),且与y轴交于点B(0,﹣2),小强得到以下结论:①0<a<2;②﹣1<b<0;③c=﹣1;④当|a|=|b|时x2>
﹣1;以上结论中正确结论的序号为 . 
相关试题