【题目】如图,抛物线y=
x2﹣
x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.
(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).
![]()
参考答案:
【答案】(1)AB=9,OC=9;(2)s=
m2(0<m<9);(3)
.
【解析】试题分析:(1)已知抛物线的解析式,当
可确定
点坐标;当
时,可确定
点的坐标,进而确定
的长.
(2)直线
可得出
相似,它们的面积比等于相似比的平方,由此得到关于
的函数关系式;根据题干条件:点
与点
不重合,可确定
的取值范围.
(3)①首先用
列出
的面积表达式,
的面积差即为
的面积,由此可得关于
的函数关系式,根据函数的性质可得到
的最大面积以及此时
的值;
②过
做
的垂线
,这个垂线段的长即为与
相切的
的半径,可根据相似三角形
得到的相关比例线段求得该半径的值,由此得解.
试题解析:(1)已知:抛物线
当x=0时,y=9,则:C(0,9);
当y=0时,
,得:
,则:A(3,0)、B(6,0);
∴AB=9,OC=9.
(2)
∴△AED∽△ABC,
即:
得:
![]()
(3)解法一:
∵0<m<9,
∴当
时,
取得最大值,最大值为
此时,
记E与BC相切于点M,连接EM,则EM⊥BC,设E的半径为r.
在
中,
∴△BOC∽△BME,
∴所求
的面积为:
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知BD是△ABC的角平分线,点E.F分别在边AB.BC上,且ED∥BC,EF∥AC,求证:
(1)BE等于CF
(2)∠ABC=60゜,∠ADB=100゜,求∠AEF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.
(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:
(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解我市市民2018年乘坐公交车的每人月均花费情况,相关部门随机调查了1000人的相关信息,并绘制了如图所示的频数直方图,根据图中提供的信息,有下列说法(每组值包括最低值,不包括最高值):①乘坐公交车的月均花费在60元~80元的人数最多;②月均花费在160元(含160元)以上的人数占所调查总人数的10%;③在所调查的1000人中,至少有一半以上的人的月均花费超过75元;④为了让市民享受更多的优惠,相关部门拟确定一个折扣标准,计划使30%左右的人获得优惠,那么可以是乘坐公交车的月均花费达到100元(含100元)以上的人享受折扣.

A.1个B.2个C.3个D.4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.

(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有 名学生.
(2)补全女生等级评定的折线统计图.
(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形AEFG的顶点E,G分别在正方形ABCD的AB,AD边上,连接B,交EF于点M,交FG于点N,设AE=a,AG=b,AB=c(b<a<c).
(1)求证:
;(2)求△AMN的面积(用a,b,c的代数式表示);
(3)当∠MAN=45°时,求证:c2=2ab.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系
中,点
的坐标为(0,4),线段
的位置如图所示,其中点
的坐标为(
,
),点
的坐标为(3,
).
(1)将线段
平移得到线段
,其中点
的对应点为
,点
的对应点为点
.①点
平移到点
的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;②点
的坐标为 .(2)在(1)的条件下,若点
的坐标为(4,0),连接
,画出图形并求
的面积.
相关试题