【题目】如图,在平面直角坐标系
中,点
的坐标为(0,4),线段
的位置如图所示,其中点
的坐标为(
,
),点
的坐标为(3,
).
![]()
(1)将线段
平移得到线段
,其中点
的对应点为
,点
的对应点为点
.
①点
平移到点
的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;
②点
的坐标为 .
(2)在(1)的条件下,若点
的坐标为(4,0),连接
,画出图形并求
的面积.
参考答案:
【答案】(1)①右、3、上、5(或上、5、右、3);②(6,3);(2)10.
【解析】
(1)由点M及其对应点的A的坐标可得平移的方向和距离,据此可得点N的对应点B的坐标;
(2)割补法求解可得.
(1)如图,
![]()
①点M平移到点A的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;
②点B的坐标为(6,3),
(2)如图,
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=
x2﹣
x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).

-
科目: 来源: 题型:
查看答案和解析>>【题目】在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.

(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有 名学生.
(2)补全女生等级评定的折线统计图.
(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形AEFG的顶点E,G分别在正方形ABCD的AB,AD边上,连接B,交EF于点M,交FG于点N,设AE=a,AG=b,AB=c(b<a<c).
(1)求证:
;(2)求△AMN的面积(用a,b,c的代数式表示);
(3)当∠MAN=45°时,求证:c2=2ab.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程kx2+(2k+1)x+2=0.
(1)求证:无论k取任何实数时,方程总有实数根;
(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;
(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市举行“第十七届中小学生书法大赛”作品比赛,已知每幅参赛作品成绩记为
,组委会从1000幅书法作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制成如下统计图表.分数段
频数
百分比

38
0.38

________
0.32

________
________

10
0.1
合计
________
1

根据上述信息,解答下列问题:
(1)这次书法作品比赛成绩的调查是采用_____(填“普查”或“抽样调查”),样本是_____.
(2)完成上表,并补全书法作品比赛成绩频数直方图.
(3)若80分(含80分)以上的书法作品将被评为等级奖,试估计全市获得等级奖的数量.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料:如图1,若
,则
.理由:如图,过点
作
,则
.因为
,所以
,所以
,所以
.
交流:(1)若将点
移至图2所示的位置,
,此时
、
、
之间有什么关系?请说明理由.探究:(2)在图3中,
,
、
又有何关系?应用:(3)在图4中,若
,又得到什么结论?请直接写出该结论.
相关试题