【题目】如图,已知BD是△ABC的角平分线,点E.F分别在边AB.BC上,且ED∥BC,EF∥AC,求证:
(1)BE等于CF
(2)∠ABC=60゜,∠ADB=100゜,求∠AEF.
![]()
参考答案:
【答案】(1)详见解析;(2)1200
【解析】
(1)先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.
(2)根据∠AEF=180°-∠A,想办法求出∠A即可;
(1)∵ED∥BC,EF∥AC,
∴四边形EFCD是平行四边形,
∴DE=CF,
∵BD平分∠ABC,
∴∠EBD=∠DBC,
∵DE∥BC,
∴∠EDB=∠DBC,
∴∠EBD=∠EDB,
∴EB=ED,
∴EB=CF.
(2)∵∠ABD=
∠ABC=30°,
∴∠A=180°-30°-100°=50°,
∵EF∥AC,
∴∠AFE+∠A=180°,
∴∠AFE=130°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1560元,20本文学名著比20本动漫书多360元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).
(1)求每本文学名著和动漫书各多少元?
(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于74本,总费用不超过2100,请求出所有符合条件的购书方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们用
表示不大于
的最大整数,例如:
,
,
;用
表示大于
的最小整数,例如:
,
,
.解决下列问题:(1)
= ,,
= ;(2)若
=2,则
的取值范围是 ;若
=-1,则
的取值范围是 ;(3)已知
,
满足方程组
,求
,
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】在以
为原点的平面直角坐标系中,有不在坐标轴上的两个点
、
,设
的坐标为
,点
的坐标
(1)若
与坐标轴平行,则
;(2)若
、
、
满足
和
,
轴,垂足为
,
轴,垂足为
.①求四边形
的面积;②连
、
、
,若
的面积大于
而不大于
,求
的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.
(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:
(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了解我市市民2018年乘坐公交车的每人月均花费情况,相关部门随机调查了1000人的相关信息,并绘制了如图所示的频数直方图,根据图中提供的信息,有下列说法(每组值包括最低值,不包括最高值):①乘坐公交车的月均花费在60元~80元的人数最多;②月均花费在160元(含160元)以上的人数占所调查总人数的10%;③在所调查的1000人中,至少有一半以上的人的月均花费超过75元;④为了让市民享受更多的优惠,相关部门拟确定一个折扣标准,计划使30%左右的人获得优惠,那么可以是乘坐公交车的月均花费达到100元(含100元)以上的人享受折扣.

A.1个B.2个C.3个D.4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=
x2﹣
x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;
(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;
(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).

相关试题